high concentrations of long-acting, pegylated IL-10 have also shown anti-tumor activity. Here we investigated IL-10 and IL-10 receptor-alpha (IL-10RA) expression profiles in normal and tumor tissues as well as the immunological effects of modulating the IL-10 pathway via antibody-mediated blockade of IL-10RA.

Methods IL-10 and IL-10RA mRNA are expressed by several tumors, including renal, lung, breast, and colon cancers. Fluorescent in-situ hybridization revealed that the majority of IL-10RA was expressed by CD3-negative tumor-infiltrating cells, localized in close proximity to T cells in the tumor microenvironment (TME). Immunohistochemistry studies confirmed expression of IL-10RA in the TME, while no expression was detected in healthy tissues. Furthermore, dissociated tumor cells produced biologically active levels of IL-10 in culture.

Results Monoclonal antibodies (mAbs) against IL-10RA prevented IL-10 signaling and enhanced release of IL-12 by monocyte-derived dendritic cells activated with suboptimal LPS concentrations. The effect of IL-10RA blockade was greater than that observed with IL-10 neutralizing mAbs. In mixed lymphocyte reactions and superantigen-driven T-cell activation, IL-10RA blockade enhanced IL-2 secretion by T lymphocytes. Consistent with earlier observations in mouse models, the effect of IL-10RA blockade was nonredundant with blockade of the PD-1/PD-L1 axis, resulting in enhanced IL-2 and interferon-gamma secretion by T cells when both pathways were inhibited. Blockade of IL-10RA during CD3-redirected in vitro killing of tumor cells by PBMC induced IL-12 release as well as upregulation of CD86 and HLA-DR by CD3-negative cells. In vitro dissociated tumor cells, IL-10RA blockade induced release of IL-2, interferon-gamma and other proinflammatory cytokines; additional PD-1/PD-L1 axis blockade further enhanced cytokine release.

Conclusions In summary, antibody-mediated IL-10RA blockade can potentiate immune activation in the dissociated tumor cells and may be a valuable addition to cancer immunotherapies, including redirected T-cell killing and checkpoint blockade.

REFERENCES

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0682

683 A NOVEL MECHANISM OF NEUROPLIN-1 INHIBITION RESULTS IN IMPROVED TUMOR GROWTH INHIBITION IN VIVO

Erik Zhu, Daniel Blom*, Shalini Sethumadhavan, Chengfeng Merriman, Katherine Molloy, Alexandra Fink, Shan Lou, Andrew Rogantini, Ameya Apte, Mandana Abbasnia, Tiffany Liao, Hongyu Dai, Aaron Fulgham, Jonathan Hurov, Pearl Huang. Cygnal Therapeutics, Cambridge, MA, USA

Background Neuroplnin-1 (NRPI) is a co-receptor that complexes with diverse ligands and their cognate receptors. As such, it plays a role in multiple different biological processes, including axon guidance and angiogenesis. NRPI contains two CUB domains (a1 and a2) involved in binding the ligand Semaphorin3A (SEMA3A), two Factor V/VIII domains (b1 and b2) involved in VEGF ligand binding and one MAM domain (c domain). While functional antibodies with anti-tumor activity have been generated against the SEMA3A and VEGF binding domains, little attention has been paid to the c domain of NRPI, which has been implicated in the dimerization of NRPI, a prerequisite for functionality. We therefore hypothesized that c domain-binding antibodies would offer an opportunity to generate functional inhibitors of both SEMA3A and VEGF signaling and therefore improved anti-tumor activity.

Methods Recombinant human NRPI comprising all subdomains was used to identify fully human anti-NRPI antibodies. Specific antibodies were tested for their ability to block NRPI interactions with recombiant SEMA3A and VEGF protein in vitro. Blocking antibodies were subsequently assessed for their functional effects, such as inhibition of SEMA3A-mediated growth cone collapse. Antibodies with diverse binding characteristics were then tested for in vivo anti-tumor activity in multiple cancer models of interest.

Results Recombinant NRPI containing the a1, a2, b1, b2 and c subdomains was used to successfully identify a series of specific monoclonal antibodies that cross-reacted with Cynomolgus monkey and mouse NRPI, but not human NRPI. Except for the a2 domain, epitope mapping showed an even distribution of mAbs for binding to each of the NRPI subdomains, including the c domain that has been proposed to play a role in dimerization. Using biolayer interferometry, we identified antibody classes with direct SEMA3A and/or VEGF blocking properties. Further optimization of these antibodies yielded mAbs with subnanomolar affinities that showed significant tumor growth inhibition in multiple mouse models, including anti-PD1 non-responsive models.

Conclusions Here we demonstrate the identification of fully human monoclonal antibodies that specifically bind to the c domain of human NRPI. A subset of these c domain binders do not block either SEMA3A or VEGF binding to NRPI but do show in vivo efficacy, suggesting a role for the c domain of NRPI in the formation of functional (dimeric) complexes. Thus, c domain binding antibodies show remarkable inhibition of tumor growth in mouse cancer models and offer a novel means of therapeutic intervention in patients who are refractory to immune checkpoint inhibition.

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0683

684 A LOW AFFINITY BIVALENT MESOTHELIN-BINDING MATCH4 MULTISPECIFIC T CELL ENGAGER INCREASES CYTOTOXIC SELECTIVITY FOR HIGH MESOTHELIN EXPRESSING CELLS

Bibi Chatterjee*, Alexandre Simonin, Daniel Snell, Tea Gunde, Christian Hess, Matthias Brock, Stefan Wurmuth, Christopher Weinert, Niels Kirk, Daria Diem, Naomi Flückiger, Robin Heiz, Benjamin Kütter, Dana Mahler, Diego Morenzoni, Sandro Wagen, Julita Zeberer, David Urech. Numab Therapeutics, Wadenswil, Switzerland

Background The effective treatment of solid tumors remains an unmet medical need. Several concepts exist to treat malignancies, including antibody-drug or -immunotoxin conjugates, immune checkpoint inhibition, CAR- T cells, as well as bispecific T cell engagers. CD3-based T cell engagers are highly potent therapeutic molecules with T cell cytotoxicity activities in the picomolar range. Alongside this highly potent anti-tumor activity is the risk of on-target off-tumor effects due to low levels of expression of the target antigen in normal tissue, as has been observed for the tumor-associated antigen mesothelin (MSLN).

Methods Low-affinity antibody fragments to the tumor-associated antigen MSLN were generated, and a multispecific
MATCH4 molecule was constructed containing bivalent low-affinity MSLN binding domains, a CD3 binding domain, and a serum albumin-binding domain for half-life extension. This molecule was tested in a cytotoxicity assay using human PBMCs co-cultured with H226 or MeT-5A cells, which express high or low levels of MSLN, respectively. The MeT-5A line, derived from mesothelial cells in the pleural fluid of non-cancerous individuals, represents normal MSLN-expressing cells. Soluble MSLN was added to determine effects on cytotoxicity. In vivo xenograft mouse studies were conducted using a tumor cell/PBMC co-implantation model, followed by regular dosing with molecules of interest.

Results Here we report the design and the promising preclinical activity of the MATCH4 molecule in vitro and in vivo. We demonstrate that the low-affinity bivalent MSLN T cell engager has increased in vitro potency in T cell activation and tumor cell killing, as compared to a high-affinity monovalent counterpart on high MSLN expressing cells. We also demonstrate that the activity on low MSLN expressing cells is reduced for the low-affinity bivalent compared to the high affinity monovalent molecule. Because soluble MSLN is shed from cancer cells into cancer patient serum, we also demonstrate that up to 500 ng/mL of soluble MSLN does not interfere with the cytotoxic activity of the low affinity bivalent T cell engager, compared to the effects of soluble MSLN on a high affinity monovalent T cell engager. Importantly, we demonstrate in vivo that the low-affinity bivalent molecule significantly inhibits tumor growth in a dose-dependent manner.

Conclusions Collectively, these data demonstrate anti-tumor efficacy by this novel multispecific low affinity bivalent T cell engager. These data indicate the potential of this molecule to increase the therapeutic window by reducing safety concerns on normal tissue where MSLN expression is low, and yet increase cytotoxicity to MSLN-expressing cancer cells.

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0684

Background HPK1, a member of the MAP4K family of protein serine/threonine kinases, is involved in regulating signal transduction cascades in cells of hematopoietic origin. Recent data from HPK1 knockout animals and kinase-inactive knock-in animals underscores the role of HPK1 in negatively regulating immune cell activation. This negative-feedback role of HPK1 combined with its restricted expression in cells of hematopoietic origin, make it a compelling drug target for enhancing anti-tumor immunity.

Methods A structure-based drug design approach was used to identify potent and selective inhibitors of HPK1. Biochemical assays, as well as primary human and mouse immune cell-based activation assays, were utilized for multiple iterations of structure-activity relationship (SAR) studies. In vivo efficacy, target engagement and pharmacodynamic data were generated using murine syngeneic tumor models.

Results A highly potent, HPK1 inhibitor was identified, that showed high selectivity against T cell-specific kinases and kinases in the MAP4K family. In vitro, HPK1 small molecule inhibition resulted in enhanced IL-2 production in primary mouse and human T cells, enhanced IL-6 and IgG production in primary human B cells, and enhanced mouse dendritic cell activation and antigen presentation capacity. Furthermore, HPK1 inhibition alleviated the immuno-suppressive effects of PGE2 on naïve human T cells and restored the proliferative capacity of exhausted human T cells. In vivo, HPK1 inhibition HPK1 inhibition abrogated T cell receptor-stimulated phospho-SLP-76, enhanced cytokine production, and mediated robust tumor growth inhibition in a murine syngeneic tumor model.

Conclusions Pharmacological blockade of HPK1 kinase activity represents a novel and potentially valuable immunomodulatory approach for anti-tumor immunity.

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0685