TCGA. IO-108 binds to LILRB2 with high affinity and specificity and blocks LILRB2/ILT4 ligand binding and activation. IO-108 enhanced the production of multiple proinflammatory cytokines in LPS- and anti-CD3-stimulated PBMC cultures from healthy donors and potentiated DC maturation/activation in response to LPS. Moreover, IO-108 polarized primary CD14+ cells isolated from solid tumor patient PBMC and ovarian cancer-associated ascites towards a proinflammatory phenotype and attenuated their suppressive effect on autologous T-cell proliferation and production of tumoricidal cytokines.

Conclusions The preclinical characterization of IO-108, a novel LILRB2/ILT4 antagonistic antibody, demonstrates its ability to polarize tumor-associated myeloid cells towards a proinflammatory phenotype and suggests potential therapeutic benefit in tumors unresponsive to immune checkpoint blockade.

Acknowledgements We acknowledge the funding support from National Cancer Institute (IR01 CA248736 and 2P30 CA142543), the Welch Foundation (AU-0042-20030616) and the Cancer Prevention and Research Institute of Texas (RP150551 and RP190561).

Ethics Approval PBMCs were isolated from buffy coats of healthy donors (Interstate Blood Bank). Hematopoietic samples from cancer patients were obtained through the services of the Simmons Cancer Center’s Tissue Management Shared Resource with IRB approved protocol (STU 102010-051). All animal work was approved and conducted under the oversight of the UT Southwestern Institutional Animal Care and Use Committee (IACUC).

REFERENCES

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0686
IN VIVO EXPANSION OF GAMMA DELTA T CELLS BY A CD19-TARGETED BUTYROPHILIN HETERODIMER LEADS TO ELIMINATION OF PERIPHERAL B CELLS

Suresh De Silva*, George Fromm, Louis Gonzalez, Arpita Patel, Kyung Yoon, Zachery Opheim, Robert Farmer, Dean Chamberlain, Taylor Schreiber. Shattuck Labs, Durham, NC, USA

Background: A primary mechanism of cancer immunotherapy resistance involves downregulation of specific antigens or major histocompatibility complex based antigen presentation, which renders tumor cells invisible to alpha-beta T cells, but not gamma-delta T cells. Recently, a two-step model of gamma-delta T cell activation has emerged, wherein one butyrophilin (BTN, ie. BTN2A1) directly binds the gamma-delta TCR but is only activated if certain molecular patterns (eg. phosphoantigens) facilitate recruitment of a second BTN (ie. BTN3A1) into a complex to form a BTN2A1/3A1 heterodimer. This model suggests that therapeutic agents comprising specific BTN heterodimers could be used to target specific gamma-delta T cell populations, with a lower risk of off-target activation common with CD3-directed T cell engagers.

Methods: Human BTN2A1/3A1-Fc-CD19scFv and mouse BTN1L/6-Fc-CD19scFv heterodimeric fusion proteins were purified and binding to CD19 or the respective gamma-delta TCRs was assessed by ELISA, Octet and flow cytometry using gd T-cells isolated from human peripheral blood and mouse intestinal tissue. The functionality of the constructs to activate gamma-delta T cells and mediate killing of tumor cells was assessed using live cell imaging in vitro as well as a murine B-cell lymphoma model in vivo.

Results: The CD19-targeting scFv domains of the BTN heterodimer fusion proteins bound to human and mouse CD19 with low nanomolar affinity. The BTN2A1/3A1-Fc-CD19scFv compound specifically bound to the Vg9d2 T cell receptor (TCR), but does not activate the primary gamma-delta T cell population in murine tissues, comprising the Vg4 TCR. The unique mechanism of action and specificity of gamma-delta TCR/BTN interactions suggests that therapeutic proteins comprising specific BTN heterodimers could be used to target specific gamma-delta T cell populations, with a lower risk of off-target activation common with CD3-directed T cell engagers.

Conclusions: These results provide proof-of-concept for in vivo manipulation of gamma-delta T cells using antigen-targeted butyrophilin heterodimeric fusion proteins for the treatment of cancer.