IN VIVO EXPANSION OF GAMMA DELTA T CELLS BY A CD19-TARGETED BUTYROPHILIN HETERODIMER LEADS TO ELIMINATION OF PERIPHERAL B CELLS

Suresh De Silva*, George Fromm, Luis Gonzalez, Apita Patel, Kyung Yoon, Zachery Opheim, Robert Farmer, Dean Chamberlain, Taylor Schreiber. Shattuck Labs, Durham, NC, USA

Background A primary mechanism of cancer immunotherapy resistance involves downregulation of specific antigens or major histocompatibility complex based antigen presentation, which renders tumor cells invisible to alpha-beta T cells, but not gamma-delta T cells. Recently, a two-step model of gamma-delta T cell activation has emerged, wherein one butyrophilin (BTN, ie. BTN2A1) directly binds the gamma-delta TCR but is only activated if certain molecular patterns (eg, phosphoantigens) facilitate recruitment of a second BTN (ie. BTN3A1) into a complex to form a BTN2A1/3A1 heterodimer. The BTN2A1/3A1 complex specifically activates the predominant gamma-delta T cell population in the peripheral blood, comprising the Vg9d2 T cell receptor (TCR), but does not activate the primary gamma-delta T cell population in mucosal tissues, comprising the Vg4 TCR. The unique mechanism of action and specificity of gamma-delta TCR/BTN interactions suggests that therapeutic proteins comprising specific BTN heterodimers could be used to target specific gamma-delta T cell populations, with a lower risk of off-target activation common with CD3-directed T cell engagers.

Methods Human BTN2A1/3A1-Fc-CD19scFv and mouse BTN1L1/6-Fc-CD19scFv heterodimeric fusion proteins were purified and binding to CD19 or the respective gamma-delta TCRs was assessed by ELISA, Octet and flow cytometry using gd T-cells isolated from human peripheral blood and mouse tumor environment. The novel target of ATRC-101 was found to be a tumor-restricted ribonucleoprotein (RNP) complex, and because RNP complexes drive T cell responses in infectious and autoimmune disease via innate immune cells, we further characterized the mechanism-of-action of ATRC-101. Here we describe changes in immune cell populations in a tumor model proximal to treatment initiation with ATRC-101.

Methods Mice bearing EMT6 tumors received ATRC-101 beginning on day 7 post-tumor inoculation. Tissues were harvested between days 7 and 14 and analyzed by flow cytometry and immunohistochemistry. Transcriptome analysis was performed using RNA sequencing on whole tumors on days 7, 9, and 12.

Results The earliest significant changes induced by ATRC-101, relative to vehicle, were noted just 24 hours after dosing: increased numbers of cDC1 cells in blood, and decreased numbers of cDC2 cells in blood and M-MDSCs in tumor. A significant increase of CD8+ T cells was observed in blood 48 hours after dosing and in tumor 96 hours after dosing. Increased numbers of NK cells were also observed in blood and tumor at this later time. Multiplex analysis of circulating cytokines demonstrated a very early increase in myeloid chemo-attractants, such as MCP1 and MIP1a. Whole exome sequencing of tumor samples showed that ATRC-101 dosing drives a significant increase, relative to vehicle, in the expression of interferon-stimulated genes. Co-culturing experiments demonstrated that induced, bone marrow-derived dendritic cells are activated by ATRC-101 and its target in a dose-dependent fashion.

Conclusions Dosing with ATRC-101 in the EMT6 syngeneic tumor model, in which ATRC-101 displays notable single-agent activity, leads to changes in immune cell composition in the blood and tumor, with the earliest changes observed in myeloid or myeloid-derived cell populations, and to the early appearance of myeloid chemo-attrators. We believe these data indicate that ATRC-101 acts proximally on the myeloid cell populations in the tumor, leading to a remodeling of the tumor environment and an adaptive immune response that
includes CD8+ T cells driving tumor regression. Our data demonstrate that ATRC-101, bound to its target which is an RNP complex, can activate myeloid cells and are consistent with this activation occurring via FcR and Toll-like receptor (TLR) pathways.

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0689

CD122-SELECTIVE IL-2 COMPLEXES TREAT OVARIAN CARCINOMAS, INDUCE TREG FRAGILITY AND PROMOTE T CELL STEM CELLS


1UT Health San Antonio, San Antonio, TX, USA; 2UT Southwestern, Dallas, TX, USA

Background Ovarian cancer (OC) responds poorly to immunotherapies. Regulatory T cells (Treg) engage IL-2 by high-affinity CD25 for differentiation and function, and anti-tumor effector T cells (Teff) use intermediate affinity CD122. We studied IL-2 complexes (IL-2c) that selectively activate CD122 (Teff) over CD25 (Tregs).

Methods Orthotopic ID8agg-luc mouse OC burden was measured by in vivo imaging. Tumor, ascites and draining lymph nodes (TDLN) were analyzed by flow and tSNE. IL-2c was complexed using 1.5 mg/mouse IL-2 and 7.5 mg/mouse aIL-2 (clone JES6-5H4) before i.p. injection every other day x 4 starting at day 7. antiPD-L1 was given at 100ug/mouse every 3 days x 4 starting from Day 11. FIR mice were used to sort live Tregs.

Results IL-2c but not antiPD-L1 potently inhibits ID8agg (figure 1). IL-2c decreased ascites Treg functional markers (e.g., CD25, granzymeB) while upregulating the same markers on Teffs (figure 2). IL-2c inhibited Treg suppression in ascites while TDLN Tregs were unaffected (figure 3). tSNE showed great similarity of TDLN Tregs treated with isotype and IL-2c while ascites Tregs after IL-2c showed a fragile phenotype (e.g., increased PD-1, T-bet, and IFNgamma with maintained FoxP3 expression [figure 4]) which is known to contribute to better response to cancer immunotherapy. We observed a complete reduction of tumor bioluminescence with IL-2c alone (figure 5). A CD8+CXCR5+TCF-1+ T cell stem cell (TCSC) population reportedly improves immune checkpoint blockade efficacy. Since CD122 is regulated by TCF-1, we explored the effect of IL-2c on these TCSC. IL-2c significantly induced a CD8+TCF-1+ TCSC population in ID8agg tumors (figure 6), possibly through a positive feedback loop by further enhancing CD122 expression on TCF-1+, but not TCF-1- cells (figure 7). tSNE analysis of detailed immune phenotype of IL-2c induced TCSC revealed that these TCSC differed from those induced by antiPD-L1. In ID8agg, antiPD-L1-induced TCSC are mostly CXCR5+ and PD1+, consistent with previous reports in other cancers while IL-2c-induced TCSC were PD1- (figure 8), expressed CCR2 and CXCR3, and produced TNFalpha (figure 9).