includes CD8+ T cells driving tumor regression. Our data demonstrate that ATRC-101, bound to its target which is an RNP complex, can activate myeloid cells and are consistent with this activation occurring via FcR and Toll-like receptor (TLR) pathways.

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0689

**CD122-SELECTIVE IL-2 COMPLEXES TREAT OVARIAN CARCINOMAS, INDUCE TREG FRAGILITY AND PROMOTE T CELL STEM CELLS**

Yilun Deng*, Justin Drerup, Xinyue Zhang, Ryan Reyes, Jenny Mendez, Aravind Kancharla, Myrna Garcia, Haiyan Bai, Alvaro Padron, Harshita Gupta, Tyler Curiel. 1UT Health San Antonio, San Antonio, TX, USA; 2UT Southwestern, Dallas, TX, USA

**Background** Ovarian cancer (OC) responds poorly to immunotherapies. Regulatory T cells (Treg) engage IL-2 by high-affinity CD25 for differentiation and function, and anti-tumor effector T cells (Teff) use intermediate affinity CD122. We studied IL-2 complexes (IL-2c) that selectively activate CD122 (Teff) over CD25 (Tregs).

**Methods** Orthotopic ID8agg-luc mouse OC burden was measured by in vivo imaging. Tumor, ascites and draining lymph nodes (TDLN) were analyzed by flow and tSNE. IL-2c was complexed using 1.5 μg/mouse IL-2 and 7.5 μg/mouse aIL-2 (clone JES6-5H4) before i.p. injection every other day x 4 starting at day 7. antiPD-L1 was given at 100ug/mouse every 3 days x 4 starting from Day 11. FIR mice were used to sort live Tregs.

**Results** IL-2c but not antiPD-L1 potently inhibits ID8agg (figure 1). IL-2c decreased ascites Treg functional markers (e.g., CD25, granzymeB) while upregulating the same markers on Teffs (figure 2). IL-2c inhibited Treg suppression in ascites while TDLN Tregs were unaffected (figure 3). tSNE showed great similarity of TDLN Tregs treated with isotype and IL-2c while ascites Tregs after IL-2c showed a fragile phenotype (e.g., increased PD-1, T-bet, and IFNgamma with maintained FoxP3 expression [figure 4]) which is known to contribute to better response to cancer immunotherapy. We observed a complete reduction of tumor bioluminescence with IL-2c and antiPD-L1 combo treatment in nearly all subjects significantly exceeding effect of IL-2c alone (figure 5). A CD8+CXCR5

+TCF-1+ T cell stem cell (TCSC) population reportedly improves immune checkpoint blockade efficacy. Since CD122 is regulated by TCF-1, we explored the effect of IL-2c on these TCSC. IL-2c significantly induced a CD8+TCF-1+ TSCC population in ID8agg tumors (figure 6), possibly through a positive feedback loop by further enhancing CD122 expression on TCF-1+ cells, but not TCF-1- cells (figure 7). tSNE analysis of detailed immune phenotype of IL-2c induced TCSC revealed that these TCSC differed from those induced by antiPD-L1. In ID8agg, antiPD-L1-induced TCSC are mostly CXCR5+ and PD1+, consistent with previous reports in other cancers while IL-2c-induced TCSC were PD1- (figure 8), expressed CCR2 and CXCR3, and produced TNFalpha (figure 9).
Conclusions We define two novel IL-2c effects: inducing Treg fragility therefore reducing immunosuppression while promoting TCSC that could enhance effective anti-tumor immunity. Current work tests if effects are related and help efficacy, and mechanisms for IL-2c Treg effects. We also show that elicited TCSC differ by treatment and tumor, requiring additional investigations.

Acknowledgements This work is supported by CPRIT Research Training Award (RP 170345), Ovarian Cancer Research Alliance Ann and Sol Schreiber Mentored Investigator Award to YD and R01 CA205965 to TC.

Ethics Approval All mice studies were approved by UT Health San Antonio Institutional Animal Care and Use Committee (IACUC). Approval number 20150093AR, 20140001AR, 20170035AR, 20140039AR, 20140027AR, 20090128AR, 20120071AR, 20180021AR.

REFERENCES

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0690