Background: Activation of IL-2/15Rβγ or IL-7R on immune cells using modified versions of IL-2 or IL-7 is under investigation as monotherapy, or in combination with checkpoint inhibitors, engineered T or NK cells, or neo-antigen vaccines. We previously described small synthetic peptides, unrelated to IL-2, IL-15, or IL-7, that selectively activate either IL-2/15Rβγ or IL-7R. IL-2/15Rβγ and IL-7R activation exhibit complementary effects on immune cells when combined may offer benefits over each independent mechanism. We now report the creation of an Fc-fusion protein that incorporates both IL-2/15Rβγ and IL-7R agonist peptides, and characterize its properties in cell lines and human (PBMC) lymphocyte subpopulations.

Methods: Peptide agonists of IL-2/15Rβγ (MKDK1169) and IL-7R (MKDK1319) were separately fused to each chain of obligate heterodimeric (asymmetric) Fc molecules. The Fc-fusion was purified by protein-A and size exclusion chromatography, and characterized by LC-MS. Receptor-mediated signaling, proliferative effects and signaling patterns in responsive cell lines and primary human T cells were analyzed using flow cytometry with appropriate marker panels including AMV564 directly labeled (phycoerythrin) or detected with labeled anti-AMV564 antibodies. T cell cytotoxicity assays were conducted using primary human T cells and leukemia blast or other target cells (3:1 ratio) for 48 or 72 hours. Patient peripheral blood was sequenced for TcRbeta CDR3 variable chain on the hsTCRβv4b.

Results: AMV564 is currently under investigation in a Phase 1 clinical trial (NCT04128423). There have been no dose-limiting toxicities and clinical activity has been observed (RECIST complete response in an ovarian cancer patient) when dosed once daily as a subcutaneous injection. In patients, T cell redistribution is consistent with activation and depletion of both monocytic and granulocytic MDSCs. Immune profile changes consistent with CD8 and Th1 cell activation are observed (figure 1). Furthermore, TCR sequencing data...
indicate that one cycle of treatment is sufficient to expand and generate de novo clones (figure 2). We developed a primary cell cytotoxicity assay and observe that cytotoxic potency is target dependent. Target cell killing and T cell activation/proliferation depend on CD33 clustering, and both CD4 and CD8 T cells can engage and kill target cells. This is illustrated in assays with KG-1 (M2, clustered) and KG-1a (M0, not clustered) cell lines, in which the KG-1 cells have an EC50 15–20 fold lower than the M0 cell line (figure 3). In addition, there is little to no detectable binding or killing of monocytes or neutrophils, which is consistent with the absence of neutropenia in patients enrolled in the trial to date.

Conclusions AMV564 is a potent conditional T cell agonist which is clinically active. We demonstrate that the combination of T cell activation, increased T cell diversity, and target specificity allow AMV564 to deplete MDSCs and restore a native immune response to cancer.

Ethics Approval This study was approved by the Institutional Review Board (IRB) or Independent Ethics Committee (IEC) at each participating institution.

Abstracts

APX601, A NOVEL TNFR2 ANTAGONIST ANTIBODY FOR CANCER IMMUNOTHERAPY

Erin Filbert*, Sushma Krishnan, Ryan Akarada, George Huang, Francis Bahjat, Xiaodong Yang. Apexigen, Inc., San Carlos, CA, USA

Background A key barrier to effective immunotherapy for cancer is the immunosuppressive tumor microenvironment (TME) characterized by infiltrating regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSC). While depletion of immune-suppressive cells is a promising cancer immunotherapy strategy, current approaches are ineffective due to lack of specificity and safety concerns. Tumor Necrosis Factor Receptor 2 (TNFR2) is emerging as a novel, selective target to overcome immunosuppression in TME. TNFR2 expression is generally restricted to highly immunosuppressive cell populations in the TME and the TNFR2-TNF-α pathway plays an important role in the generation and survival of these cells. TNFR2 is also an oncogene upregulated on certain tumors and can enhance tumor cell survival. Thus, targeting TNFR2 is a promising therapeutic approach with multiple potential mechanisms of action.

Methods A diverse panel of antibodies to TNFR2 was created using APXiMAB™, Apexigen’s proprietary rabbit monoclonal antibody technology. A robust assessment of over 100 antibody candidates for TNFR2 binding, TNF-α blockade and functional assays yielded APX601, a humanized IgG1 antibody, as the lead therapeutic candidate. The ability of APX601 to reverse immune suppression was assessed in Treg and MDSC suppression assays. In addition, the ability of APX601 to deplete TNFR2-expressing Treg and tumor cells was assessed both in vitro and in vivo using the mouse Colo205 xenograft model.

Results APX601 binds specifically to human TNFR2 with high affinity (Kd = 47 pM) and recognizes a unique epitope in the CRD1 domain of TNFR2. APX601 is a potent antagonist that blocks the TNFR2-TNF-α interaction in cell-based ligand binding assays (IC50 = 0.149 nM). APX601 is capable of reversing immune suppression via two mechanisms: 1) significant blockade of the immunosuppressive functions of both Tregs and MDSCs by inhibiting the binding of TNFR2 to its ligand TNF-α and 2) depletion of TNFR2-expressing Tregs, MDSC and tumor cells via antibody-dependent cell cytotoxicity (ADCC) (EC50 = 1.14 nM) and ADCP (EC50 = 0.71 nM) effector functions.

Conclusions APX601 is a potent TNFR2 antagonist antibody that reverses immune suppression by targeting TNFR2-expressing Treg and MDSC, and induces killing of tumor cells. Our data support the further development of APX601, a promising immunotherapeutic antibody with multiple potential mechanisms of action, for the treatment of a variety of solid tumors.

Ethics Approval Healthy human blood samples were obtained from Stanford Blood Center (Palo Alto, CA) from consenting donors under an approved protocol.

NC410 IS A NOVEL IMMUNOMEDICINE FOR THE TREATMENT OF SOLID TUMORS

Linjie Tian, 2M Ines Pascoal Ramos, 3Emma de Ruijer, 1Ana Paucarmayta, 4Eline Elshof, 2Stefan Willems, 3Chang Song, 3Zanthy Cusumano, 1Jason Bosiacki, 2Linda Liu, 3Solomon Lagermann, 2Linde Meynard, 2Dallas Flowers*. NextCure, Inc., Beltsville, MD, USA; 1University Medical Center, Utrecht, Utrecht, Netherlands

Background Abnormalities in the extracellular matrix of tumor microenvironments support tumor progression, lead to