Preclinical Mechanism of Action and Anti-Tumor Activity of CB-668, a Potent, Selective and Orally Bioavailable Small-Molecule Inhibitor of the Immuno-Suppressive Enzyme Interleukin 4 (IL-4)-Induced Gene 1 (IL4I1)

Andrew MacKinnon*, Deepthi Bhupathi, Jason Chen, Tony Huang, Weiqun Li, Yong Ma, Natalija Sotirovska, Susanne Steggerda, Winter Zhang, Francesco Parlati, Calithera Biosciences, Inc., South San Francisco, CA, USA.

Background

Tumors evade destruction by the immune system through multiple mechanisms including altering metabolism in the tumor microenvironment. Metabolic control of immune responses occurs through depletion of essential nutrients or accumulation of toxic metabolites that impair immune cell function and promote tumor growth. The secreted enzyme interleukin 4 (IL-4)-induced gene 1 (IL4I1) is an L-phenylalanine oxidase that catabolizes phenylalanine and produces phenyl-pyruvate and hydrogen peroxide. IL4I1 regulates several aspects of adaptive immunity in mice, including inhibition of cytotoxic T cells through its production of hydrogen peroxide (reviewed in1). In human tumors, IL4I1 expression is significantly elevated relative to normal tissues and is notably high in ovarian tumors and B cell lymphomas. Motivated by the hypothesis that IL4I1 is an immuno-metabolic enzyme that suppresses anti-tumor immunity, we discovered CB-668, the first known small-molecule inhibitor of IL4I1.

Methods

IL4I1 enzymatic activity was measured using an HRP-coupled enzyme assay. RNA in-situ hybridization was carried out on the RNAscpe platform. Syngeneic mouse tumor models were used to evaluate the anti-tumor activity of CB-668. The level of phenyl-pyruvate in tumor homogenates was measured by LC/MS.

Results

Our clinical candidate, CB-668 is a potent and selective non-competitive inhibitor of IL4I1 (IC50 = 15 nM). CB-668 has favorable in vitro ADME properties and showed low clearance and high oral bioavailability in rodents. Twice-daily oral administration of CB-668 was well-tolerated in mice and resulted in single-agent anti-tumor activity in the syngeneic mouse tumor models B16-F10, A20, and EG7. Oral CB-668 administration reduced the levels of phenyl-pyruvate in the tumor, consistent with inhibition of IL4I1 enzymatic activity. Anti-tumor activity of CB-668 was immune cell-mediated since efficacy was abrogated in CD8-depleted mice, and CB-668 treatment caused increased expression of pro-inflammatory immune genes in the tumor. Moreover, CB-668 had no direct anti-proliferative activity on tumor cells grown in vitro (IC50 > 50 μM). CB-668 also favorably combined with anti-PD-L1 therapy to reduce tumor growth in the B16-F10 tumor model.
Conclusions These data support an immune-mediated anti-tumor effect of IL4I1 inhibition by CB-668, and suggest inhibition of IL4I1 represents a novel strategy for cancer immunotherapy.

REFERENCE

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0705

Abstracts

Background After disappointing first clinical experiences with agonistic anti-CD137 (4-1BB) antibodies, a new generation of both systemic and targeted CD137 agonists is entering clinical development.1–4 These strategies rely on biologic agents with suboptimal properties for CD137 agonism due to their relatively large sizes and long circulating half-lives. These properties may limit their tissue penetration and cause sustained agonism resulting in overstimulation and activation-induced cell death of lymphocytes due to continuous exposure. Fully synthetic constrained bicyclic peptides (Bicycles™) with antibody-like affinities and target selectivity are uniquely suited to circumvent the above barriers to optimal targeted CD137 agonistic therapeutics. BT7480 is a tumor-targeted immune cell agonist (TICA™) designed to deliver a highly potent CD137 agonist to Nectin-4 overexpressing tumor tissue with a flexible dosing schedule maximizing anti-tumor activity while circumventing the need for continuous systemic exposure.

Methods BT7480 functional activity in vitro was analyzed by measuring IL-2 and IFN gamma production from primary human PBMC/tumor cell co-cultures. BT7480 in vivo activity was determined in huCD137-syngeneic tumor models using tumor immune cell and transcriptional profiling by FACS, IHC, and Nanostring as well as tumor growth kinetics as read-outs.

Results BT7480 binds potently and simultaneously to Nectin-4 and CD137 as assessed biochemically and caused Nectin-4-dependent CD137 agonism in primary human PBMC/tumor cell co-cultures. BT7480 in vivo activity was determined in huCD137-syngeneic tumor models using tumor immune cell and transcriptional profiling by FACS, IHC, and Nanostring as well as tumor growth kinetics as read-outs.

Conclusions BT7480 is a highly potent Nectin-4 expression dependent CD137 agonist with optimal target binding, pharmacologic, and pharmacokinetic properties that enable intermittent dosing for curative effect through modulation of tumor immune microenvironment in syngeneic mouse tumor models. BT7480 is currently being evaluated in IND-enabling safety studies.

Ethics Approval The care and use of animals were reviewed and approved by the Institutional Animal Care and Use Committee (IACUC) of WuXi AppTec and conducted in accordance with the regulations of the Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC).

REFERENCES

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0706

Abstracts

706 BT7480, A FULLY SYNTHETIC TUMOR-TARGETED IMMUNE CELL AGONIST (TICA™) INDUCES TUMOR LOCALIZED CD137 AGONISM AND MODULATION OF TUMOR IMMUNE MICROENVIRONMENT

Punit Upadhyaya, Kristen Hurov, Jessica Kublin, Jun Ma, Elizabeth Repash, Marrianna Kleyman, Julia Kristenson, Drasti Kanakia, Fanglei You, Liuhong Chen, Eric Haines, Satija Battula, Kevin McDonnell, Philip Brandish, Johanna Lahdenranta*, Nicholas Keen. Bicycle Therapeutics, Lexington, MA, USA

Background After disappointing first clinical experiences with agonistic anti-CD137 (4-1BB) antibodies, a new generation of both systemic and targeted CD137 agonists is entering clinical development.1–4 These strategies rely on biologic agents with suboptimal properties for CD137 agonism due to their relatively large sizes and long circulating half-lives. These properties may limit their tissue penetration and cause sustained agonism resulting in overstimulation and activation-induced cell death of lymphocytes due to continuous exposure. Fully synthetic constrained bicyclic peptides (Bicycles™) with antibody-like affinities and target selectivity are uniquely suited to circumvent the above barriers to optimal targeted CD137 agonistic therapeutics. BT7480 is a tumor-targeted immune cell agonist (TICA™) designed to deliver a highly potent CD137 agonist to Nectin-4 overexpressing tumor tissue with a flexible dosing schedule maximizing anti-tumor activity while circumventing the need for continuous systemic exposure.

Methods BT7480 functional activity in vitro was analyzed by measuring IL-2 and IFN gamma production from primary human PBMC/tumor cell co-cultures. BT7480 in vivo activity was determined in huCD137-syngeneic tumor models using tumor immune cell and transcriptional profiling by FACS, IHC, and Nanostring as well as tumor growth kinetics as read-outs.

Results BT7480 binds potently and simultaneously to Nectin-4 and CD137 as assessed biochemically and caused Nectin-4-dependent CD137 agonism in primary human PBMC/tumor cell co-cultures. BT7480 in vivo activity was determined in huCD137-syngeneic tumor models using tumor immune cell and transcriptional profiling by FACS, IHC, and Nanostring as well as tumor growth kinetics as read-outs.

Conclusions BT7480 is a highly potent Nectin-4 expression dependent CD137 agonist with optimal target binding, pharmacologic, and pharmacokinetic properties that enable intermittent dosing for curative effect through modulation of tumor immune microenvironment in syngeneic mouse tumor models. BT7480 is currently being evaluated in IND-enabling safety studies.

Ethics Approval The care and use of animals were reviewed and approved by the Institutional Animal Care and Use Committee (IACUC) of WuXi AppTec and conducted in accordance with the regulations of the Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC).

REFERENCES

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0706

Abstracts

707 DISCOVERY OF A NOVEL EP2 AND EP4 DUAL ANTAGONIST

Yeri Lee, ²Hyun Jin Kim, ²Donggeon Kim, ²Joo Youn Lee, ²Chang Soo Yun, ²Hyuk Lee, ²Young Sook Shin, ²Soo Bong Han, ²Sang Kyun Lim, ²KANAPH Therapeutics, Seoul, Korea, Republic of; ²KRICT, Daejeon, Korea, Republic of

Background Prostaglandin E2 (PGE2) is one of the most abundant prostaglandins, with crucial roles in normal and pathologic physiology. Especially, PGE2 levels are abnormally elevated in many cancers, and high levels of PGE2 are known to be pro-tumorigenic, likely due to the immune suppressive effect in the tumor microenvironment.1–4 There are four types of PGE2 receptors; EP1, EP2, EP3 and EP4. Among them, EP2 and EP4 activate adenylate cyclase and increase cAMP levels, which induce the cAMP-dependent protein kinase (PKA) signaling pathway. EP2 and EP4 are expressed in various immune cells (e.g. macrophages, dendritic cells, NK cells and CTLs), and genetic and pharmacological inhibition of EP2 and EP4 increases immune activity and suppresses tumor growth.

Methods To evaluate the binding affinity against EP2 and EP4, a radioligand binding assay was conducted using EP2 or EP4 transfected HEK293 cells. Cell membrane homogenates were incubated with [3H]PGE2 in the absence or presence of the test compounds. Following incubation, the samples were filtered rapidly under vacuum through glass fiber filters and rinsed several times with cold Tris-HCl. The filters were dried then counted for radioactivity in a scintillation counter using a scintillation cocktail. The results were expressed as a percent inhibition of the control radioligand specific binding. The antagonistic activity against EP2 and EP4 was assessed via LANCE Ultra cAMP assay (PerkinElmer). HEK293 cells over-expressing EP2 or EP4 were seeded into the plate and treated by PGE2 and compounds. After 30 minutes of incubation, cAMP levels were measured by FRET signal using Varioskan plate reader, following the manufacturer’s protocol. Anti-tumor activity of KT-00113 was evaluated using LLC1 syngeneic model. When tumor volume reached approximately 100 mm³, mice were treated PO, QD. Tumor size was measured twice every week.

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0706

Abstracts