Background TGFβ production by solid tumors and their microenvironment is a major mechanism used by tumors to avoid immunosurveillance. Blockade of TGFβ has been shown to promote an anti-tumor response; however, systemic blockade of TGFβ has also been associated with toxicity. We hypothesized that a PD1 x TGFβR2 bispecific antibody could selectively block the suppressive activity of TGFβ on tumor T cells and enhance their anti-tumor activity while avoiding the toxicity associated with systemic blockade.

Methods We engineered bispecific antibodies that simultaneously engage PD1 and TGFβR2 using Xencor’s XmAb platform. The anti-TGFβR2 arm was tuned for optimal activity by introducing affinity-modulating amino acid substitutions. The activity of PD1 x TGFβR2 bispecifics was evaluated in vitro using a signaling assay to measure phosphorylated SMAD (pSMAD) by flow cytometry with exogenous TGFβ in unactivated (PD1-low) vs. activated (PD1-high) T cells. Similar selectivity was found that T cells from activated, serum-deprived PBMCs from healthy donors exhibited robust induction of pSMAD in response to TGFβ, and PD1 x TGFβR2 bispecifics selectively inhibited pSMAD induction in PD1-positive T cells as demonstrated by over a 100-fold potency increase compared to an untargeted anti-TGFβR2 control. Additionally, we saw an enhancement of potency when evaluating blocking activity in activated CD4+ T cells with iDCs in the presence of 10 ng/ml of TGFβ.

Results PD1 x TGFβR2 bispecifics were confirmed to bind PD1 and block binding of TGFβ to TGFβR2. In vitro, we found that T cells from activated, serum-deprived PBMC exhibited robust induction of pSMAD in response to TGFβ, and PD1 x TGFβR2 bispecifics selectively inhibited pSMAD induction in PD1-positive T cells as demonstrated by over a 100-fold potency increase compared to an untargeted anti-TGFβR2 control. Additionally, we saw an enhancement of potency when evaluating blocking activity in activated (PD1-high) vs. unactivated (PD1-low) T cells. Similar selectivity was measured when comparing inhibition of pSMAD induction for activated T cells versus other PD1-negative, TGFβ-responsive immune cells. Intriguingly, TGFβR2 bispecifics incorporating antibodies against other T cell targets allowed for the targeting of a broader population of T cells while still conferring potent selectivity against target-negative cells. In vivo, treatment of huPBMC-NSG mice with TGFβR2 bispecifics promoted superior T cell engraftment and combined additively with PD1 blockade. Furthermore, TGFβR2 bispecific treatment of huPBMC-NSG mice containing established MDA-MB-231 triple-negative breast cancer tumors promoted an anti-tumor response that was also augmented with PD1 blockade.

Conclusions Multiple PD1 x TGFβR2 bispecifics were engineered to selectively block TGFβR2 on PD1-positive T cells and evaluated in vitro and in vivo. Compelling activity, including additivity with PD1 blockade, suggests that clinical development is warranted for the treatment of human malignancies.
blockade. Soluble LAG-3 may be an important biomarker for monitoring the pharmacodynamic activity of FS118 in patients.

Ethics Approval All animal experiments were conducted under a UK Home Office Project Licence and approved by an Animal Welfare and Ethical Review Board (AWERB) in accordance with the UK Animal (Scientific Procedures) Act 1986 and with EU Directive EU 86/609

REFERENCE

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0715

716 CELL-BASED VIROTHERAPY FOR TARGETING CANCERS

1Duong Nguyen, 1Alberto Gomez, 2Forest Neuhrath, 1Ashley Alamillo, 2Thomas Hermann, 2Barbara Härtl, 1Laura Schneider, 1Ivelina Minev, 1Boris Minev, 2Dobrin Draganov*, 1Antonio Santidrian. 1Calidi Biotherapeutics, San Diego, CA, USA; 2StemVac GmbH, Bernried, Germany

Background Oncolytic virotherapy has been recognized as a promising new therapy for cancer for decades but only few viruses have been approved worldwide. The therapeutic potential of oncolytic viruses can be severely restricted by innate and adaptive immune barriers making oncolytic virus clinically inefficient. To overcome this obstacle, we utilized adipose-derived stem cells (AD-MSC) loaded with tumor selective CAL1 oncolytic vaccinia virus to generate a new therapeutic agent called SNV1 (SuperNova-1).

Methods CAL1 vaccinia virus was tested for its ability to replicate and selectively kill various human cancer cell lines in vitro and in vivo. Additionally, CAL1 was loaded into adipose-derived mesenchymal stem cells (AD-MSC) to generate SuperNova1 (SNV1). Both CAL1 and SNV1 were tested for their ability to kill cancer cells in the presence of active complement and neutralizing antibodies in cell culture as well as in mice. Immune cell infiltration of the treated and untreated tumors was analyzed by flow cytometry.

Results CAL1 showed preferential amplification and killed various tested human (PC3, FaDu, MDA-MB-231, RPMI) and mouse cancer cells (CT26, EMT6, TRAMP-C2, RM1). In animals, CAL1 caused tumor regression in PC3 and CT26 mouse models without signs of toxicity. SNV1 significantly enhanced protection of CAL1 virus from clearance by the immune system as compared to naked CAL1 virus, leading to higher therapeutic efficacy in animals. Five days after SNV1 administration, tumor infiltrating lymphocytes (TILs) from both treated and untreated tumors showed increased CD4 and CD8 T-cell infiltrations. Importantly, we documented a decreased frequency of Tregs, and improved effector to Treg ratios, which was associated with inhibition of tumor growth at the treated tumor site and also at distant untreated sites.

Conclusions CAL1 is potentially used as an oncolytic agent. In addition, SNV1 cell-based platform protects and potentiates oncolytic vaccinia virus by circumventing humoral innate and adaptive immune barriers, resulting in enhanced oncolytic virotherapy. Particularly, SNV1 provided instantly active viral particles for immediate infection and simultaneous release of therapeutic proteins in the injected tumors.

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0716

717 AMG 160, A PROSTATE-SPECIFIC MEMBRANE ANTIGEN (PSMA)-TARGETED BIKE® IMMUNO-ONCOLOGY THERAPY, IS ACTIVE IN MODELS OF ADVANCED PROSTATE CANCER THAT ARE RESISTANT TO RADIODIAGAND THERAPY

1Katharina Luekerath*, 2Julie Ballis, 2Kyle Current, 2Mark Salvati, 1Caius Radu, 1Johannes Caemyn. 1David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; 2Amgen Inc., San Francisco, CA, USA

Background AMG 160 is an HLE BiTE® (half-life extended bispecific T-cell engager) that binds PSMA on prostate cancer cells and CD3 on T-cells and induces redirected T-cell lysis of PSMA-expressing cells. This mechanism may allow the BiTE molecule to be active in settings where other targeted or immune therapies have failed. Here, we evaluated the activity of AMG 160 in mouse models of advanced prostate cancer that are resistant to 177Lu-PSMA-617, a PSMA-targeted radioligand therapy that has emerged as a promising treatment modality for metastatic castration-resistant prostate cancer (mCRPC).

Methods Two prostate cancer models were tested in 6–8-week-old male NCG mice: one cohort had established subcutaneous C4-2 TP53+ tumors (C4-2 cells with TP53 knockout), and the other cohort had established systemic C4-2 TP53− tumors that mimic metastatic lesions (intracardiac injection). PSMA levels in both models (~255,000 PSMA/cell) are sufficient for tumor growth inhibition with 177Lu-PSMA-617. Mice were administered a single intravenous (IV) infusion of human T-cells. Three days later, mice were treated with 1 cycle of 177Lu-PSMA-617 (30 MBq, IV), or 3 weekly doses of AMG 160 (1 mg/kg, IV) or of a control HLE BiTE molecule (1 mg/kg, IV; target not expressed on C4-2 cells). Therapeutic efficacy was assessed by tumor burden measurements, time to progression (TTP), and survival.

Results In both prostate cancer models, AMG 160 treatment significantly improved disease control (figure 1). Median TTP was not reached in the AMG 160 group (p<0.0001), whereas it was 31d (177Lu-PSMA-617) and 23.5d (control) in the systemic model. Median survival was not reached in the AMG 160 group (p<0.0001); it was 39d (177Lu-PSMA-617) and 26.5d (control) in the subcutaneous model, and 68d (177Lu-PSMA-617) and 50.5d (control) in the systemic model. Median survival was not reached in the AMG 160 group (p<0.0001); it was 39d (177Lu-PSMA-617) and 26.5d (control) in the subcutaneous model, and 77d (177Lu-PSMA-617) and 61d (control) in the systemic model.

Following treatment with AMG 160, 2/10 mice with subcutaneous and 7/9 mice with systemic tumors had not progressed at the end of the observation period (>100 days). In contrast, all mice in the 177Lu-PSMA-617 and control groups succumbed to progressive disease.

Abstract 717 Figure 1 AMG 160 treatment extended survival in mouse models of advanced prostate cancer

Conclusions Our study demonstrates potent antitumor activity of AMG 160 monotherapy in models of metastatic CRPC that