Individual susceptibility to carcinogens may depend on genetic background. We performed the first-time Whole Exome Sequencing (WES) of germline DNA from individuals presenting phenotypes of extreme sensitivity and resistance to developing tobacco-induced lung adenocarcinoma, in order to characterize the genetic background associated with these relevant phenotypes.

Methods

We performed WES of germline DNA from heavy smokers (≥15 pack-years) who either developed lung adenocarcinoma at an early age (≤55 years, extreme cases, n=50) or did not present lung adenocarcinoma or other tumors at an advanced age (>72 years, extreme controls, n=50). We selected non-synonymous variants (missense and non-sense) located in the coding regions and consensus splice sites of the genes showing significantly different allelic frequencies between both cohorts. We validated our results in germline data from 52 additional extreme cases selected from TCGA using the same criteria (diagnosis of lung adenocarcinoma at ≤55 years, tobacco consumption ≥15 pack-years).

Results

The mean age for the extreme cases and controls was respectively 49.7 and 77.5 years. Mean tobacco consumption was 43.5 and 54.4 pack-years. We identified 619 significantly different variants between both cohorts, and we validated 107 of these in 52 extreme cases selected from TCGA (mean age 49.3 years, mean tobacco consumption 37 pack-years). Nine validated variants, located in relevant cancer related genes, were related with antigen processing and presentation, interferon and cytokine signaling and immune regulation, as well as DNA repair. Our results and our strategy warrant further development to characterize these clinically relevant phenotypes.

Conclusions

We describe for the first time genetic variants associated with extreme phenotypes of high and low-risk for the development of tobacco-induced lung adenocarcinoma, assessed with WES. The most significant validated variants were related with antigen presentation, immune regulation and DNA repair. Our results and our strategy warrant further development to characterize these clinically relevant phenotypes.

Ethics Approval

The study was approved by the Investigational Review Board of Clinica Universidad de Navarra, approval number 021/2009.

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0071
immunotherapy response, there is a greater need to expedite the standardization of sample collection, processing, and bioinformatics in TMB assessment.

Ethics Approval

This study was approved by the Providence St. Joseph Health Institutional Review Board, approval number STUDY2019000048.

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0072

ORTHOGONALLY AND FUNCTIONALLY VALIDATED ALGORITHM FOR DETECTING HLA LOSS OF HETEROZYGOSITY

Background

Human leukocyte antigen (HLA) genes facilitate communication between tumor cells and the immune system through the cell surface presentation of a diverse set of peptides. HLA loss of heterozygosity (LOH) has been associated with reduced immune pressure on neoantigens and impaired response to checkpoint blockade immunotherapy. Although HLA LOH is emerging as a key biomarker for response to immunotherapy, few tools exist to detect HLA LOH. Moreover, the accuracy of these tools is not well understood due to lack of orthogonal validation approaches. Here, we briefly describe DASH (Deletion of Allele-Specific HLA), an algorithm to detect HLA LOH from exome sequencing data, and present a three-pronged validation approach to assess its performance.

Methods

In-silico evaluation of the limit of detection (LOD) of DASH was performed by deeply sequencing a tumor-normal paired cell line with HLA LOH and mixing reads at different proportions to simulate variable tumor purity and clonality. Direct genomic validation was performed using digital PCR (dPCR) with allele-specific primers targeting both predicted kept and lost alleles in ten patient samples and one cell line. Quantitative immunopeptidomics was performed to compare peptides presented by HLA alleles in tumor cells and adjacent normal cells. The relative increase or decrease of peptide presentation per allele was estimated by predicting the binding of each peptide to the patient-specific alleles.

Results

DASH is a machine learning model built upon the HLA-enhanced ImmunoID NeXT Platform®. We validated the performance of DASH using three orthogonal approaches to better understand the factors driving sensitivity and specificity of the algorithm. Evaluation using cell line mixtures that simulate LOH at various dilutions helped establish the LOD of DASH. For fully clonal tumors, DASH had 100% sensitivity at all tumor purity levels above 8% and 100% specificity at tumor purity levels higher than 24%. Patient-specific and allele-specific dPCR assays provided sensitive, direct evidence of HLA LOH. All samples predicted to have HLA LOH by DASH with high confidence were confirmed by dPCR. Finally, a quantitative immunopeptidomics experiment in one patient with HLA LOH revealed a large decrease in the peptides presented by deleted alleles, revealing the functional implications of HLA LOH.

Conclusions

HLA LOH detection methods need to be rigorously validated in order to be used as a clinical biomarker. Here, we introduced three methods to assess performance, demonstrated the strong predictive power of DASH, and highlighted the need to consider tumor purity in such assessments.

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0073

NOVEL APPROACH FOR PROFILING IMMUNE-TUMOR CELL INTERACTIONS AND MUTATIONS IN THE SAME TUMOR SECTION BY MULTIPLEX IMMUNOHISTOCHEMISTRY AND NGS IN IMMUNO-Oncology TRIALS

Nathan Riccitelli, Jennifer Bordeaux, Nancy Valencia*, Ju Young Kim, Sarah Johnson, Nathan Roscoe, James Santos, Justin Santos, Jacob Levy, Deepika Asrani, Tracie Cobb, Angela McIntosh, Xun Li, Shabnam Tangri, Reinhold Pollner, Naveen Dakappagari. Navitag BiPharma

Background

Both proteins (e.g., PD-L1 IHC) and tumor mutation burden (NGS-based) are known to independently predict clinical response to anti-PD-1/PD-L1 therapies. In a meta-analysis of tumor specimens from 8135 patients treated with PD-1/PD-L1 blockers, multiplex fluorescence immunohistochemistry (mFIHC) had significantly higher diagnostic accuracy than PD-L1 IHC, tumor mutational burden (TMB), or gene expression profiling alone in predicting clinical response or equivalent to a multimodality approach (e.g., PD-L1 IHC + TMB). While the benefits of combining mFIHC (tumor-immune interaction) and NGS approaches in selection of patients for next generation immunotherapies is appealing, tumor tissue is a key limiting factor for multimodality analyses in clinical trials. To address this critical limitation, we developed a novel approach for sequential profiling of tumor and immune cell interactions by 7-parameter mFIHC assays, followed by analyses of nucleic acid extracted from same tissue sections.

Methods

Formalin-fixed paraffin-embedded (FFPE) tumor tissue and cell line blocks were sectioned, and then stained using mFIHC followed by isolation of nucleic acids, or direct isolation of total nucleic acids. NanoString, qPCR, and NGS were performed on isolated nucleic acids. Nucleic acid quality, transcript abundance, and TMB scores were compared before and after mFIHC staining.

Results

mFIHC revealed a broad range of immune cell phenotypes and spatial interactions, including T cells, B cells, NK cells, monocytes, neutrophils, and their functional status. Isolation of testable quantities of DNA from mFIHC treated slides was achieved when using a DNA-only isolation method, and TMB scores were robust across tested conditions. Cell phenotypes identified by mFIHC were compared to TMB scores across the tested samples. Following mFIHC treatment, RNA yields were reduced relative to the non-mFIHC treated replicates, but still sufficient for optimal input into a 770-target NanoString gene expression panel. However, for mFIHC treated samples, transcript levels were not distinguishable from background for the assessed targets.

Conclusions

In summary, integrating mFIHC testing and TMB analysis on the same samples allows for comprehensive biomarker evaluation. The real world benefits of the combined approach will be described in upcoming clinical trials.

REFERENCE

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0074