738 ESTABLISHMENT AND APPLICATION OF A SERIES OF GENETICALLY ENGINEERED MOUSE DERIVED BREAST CANCER HOMOGRAFT MODELS
Yanrui Song*, Jessie Wang, Likun Zhang, Annie An, Henry Li, Davy Ouyang. Crown Bioscience Inc., San Diego, CA, USA

Background Breast cancer is a complex disease which is defined by an intrinsic heterogeneity at the histopathological and molecular levels, as well as in response to therapy. It remains the second leading cause of cancer death among women worldwide despite advances in screening, detection and new therapeutic options. Therefore, it is important to establish relevant preclinical mouse models to study new therapeutics and tumor biology. Genetically engineered mouse models (GEMMs) have been developed in order to understand the molecular, biochemical and cellular functions of oncogenes or tumor suppressor genes. However, the application of GEMMs is constrained due to the spontaneous nature of tumor onset and progression and high cost of breeding. Homograft tumor models, which are derived from and retain the histopathological and molecular features of GEMMs, can be used as faithful surrogates of human tumors.

Methods We generated a series of homograft tumor models from GEMMs overexpressing human epidermal growth factor receptor 2 (HER2, also known as ERBB2) or polyomavirus middle T antigen (PyMT) driven by the mouse mammary tumor virus (MMTV) promoter, or Simian Virus 40 T-antigen (SV40 Tag) under the promotion of the rat prostate steroid binding protein (C3(1)), which are commonly used GEMMs in preclinical breast cancer research.1-2 Models were generated by transplanting the mammary tumors into donor animals. Furthermore, we characterized the homograft tumors through histopathological analysis, immunohistochemical analysis, and immune profiling, as well as immunotherapeutic, cytotoxic and targeted therapy.

Results Nine breast cancer homograft models were developed from MMTV-ERBB2, MMTV-PyMT and C3(1)-Tag GEMMs, including six hormone receptor negative and HER2 positive models (mBR9013, mBR9026, mBR9027, mBR9028, mBR9029, mBR9030), one hormone receptor positive and HER2 negative model (mBR6174) and two triple negative models (mBR6004, mBR9014). Immune profiling of six models showed enriched macrophage infiltration in the tumor microenvironment. Immunotherapy treatment with anti-mPD-1 and anti-mCTLA-4 produced tumor growth inhibition (TGI) of 98% and 110%, respectively, in the triple negative model mBR9014, accompanied by tumor regression. HER2 targeted treatment with lapatinib produced robust response with TGI ranging from 48% to 97% in one HER2 positive and two HER2 positive models. Varying response to the cytotoxic treatments was observed among different models, with cisplatin producing robust response of TGI over 80% in all five of the tested models.

Conclusions We have generated and characterized a series of mouse breast cancer homograft models from GEMMs to facilitate both mechanistic investigation and preclinical testing of novel therapeutics.

Ethics Approval Animal experiments were conducted in accordance with animal welfare law, approved by local authorities, and in accordance with the ethical guidelines of CrownBio (Taicang).

739 DEVELOPMENT OF PATIENT-DERIVED MODELS OF ESOPHAGEAL CANCER FOR GUCY2C-DIRECTED IMMUNOTHERAPEUTIC TESTING
Megan Weindorfer*, Amanda Libby, Alicja Zalewski, Trevor Baybutt, Robert Carlson, Madison Crutcher, David Loren, Ernest Rosato, Nathaniel Evans III, Scott Waldman, Adam Snook. Thomas Jefferson University, Philadelphia, PA, USA

Background Esophageal cancer is the fifth most common cause of cancer-related death in the world1 with a 5-year survival rate of <20%.2 Current therapies result in high toxicity and low efficacy, with as many as 60% of esophageal cancer patients not responding to therapeutics.3 CAR-T cell therapy is a therapeutic that can selectively and robustly target cancer cells and eliminate bulky metastatic disease. Previous studies have shown preclinical success with CAR-T cell therapy targeting the human colorectal cancer antigen guanylyl cyclase C (GUCY2C).4-5 Interestingly, esophageal cancers arising from premalignant metaplasia resembling intestine (intestinal metaplasia, also known as Barrett’s esophagus) are highly prevalent and ectopically express GUCY2C. Thus, we hypothesize that GUCY2C will serve as an effective CAR-T cell therapy target in many esophageal cancer patients. However, the paucity of intestine-like human esophageal cancer models limits exploration of this hypothesis, necessitating development of suitable esophageal cancer models (figure 1).

Methods To develop esophageal cancer models for GUCY2C immunotherapy testing, esophageal cancer samples were collected at Thomas Jefferson University Hospital by endoscopic biopsy of treatment-naïve patients or by esophagectomy, primarily in patients previously treated with standard neoadjuvant therapy. Patient-derived xenograft (PDX) models were initiated from samples to establish in vivo models for immunotherapy testing. qRT-PCR, immunoblot, and immunofluorescence were performed to test for GUCY2C expression in primary and PDX specimens. Histopathology was performed to confirm retention of primary tumor features.

Results GUCY2C was present in only 2 of 6 esophagectomy samples. Interestingly, those patients with detectable GUCY2C were treatment-naïve, while neoadjuvant-treated patients lacked viable tumor, revealing neoadjuvant therapy as a significant barrier to esophageal cancer model generation. In contrast, of the 3 adenocarcinoma specimens collected by endoscopic biopsy in treatment-naïve patients, 2 express GUCY2C. To date, PDX models have been initiated from 6 total samples and successfully established for 3 samples. This 50% success rate may improve over time as PDX formation is often delayed in many models (>150 days). Importantly, established esophageal adenocarcinoma PDX models were histologically similar to their matched primary tumors and retained GUCY2C expression, integral to their validation as models of GUCY2C immunotherapy testing.

REFERENCES

Conclusions Several human esophageal adenocarcinoma models were successfully established, primarily from endoscopic biopsy of treatment-naïve patients as neoadjuvant therapy proved to be a significant barrier. These models will be useful to explore GUCY2C-directed CAR-T cell therapies and other novel therapies targeting intestine-like esophageal cancer, prior to testing in early-phase clinical trials.

Acknowledgements The authors thank the Translational Research & Pathology Core Facility and the Office of Animal Resources at Thomas Jefferson University for their continued support to make this research possible. The authors would also like to thank the Clinical Research Unit at Thomas Jefferson University for their assistance in the collection of patient specimens. This work was supported by a DeGregorio Family Foundation Award and by the Department of Defense Congressionally Directed Medical Research Programs (W81XWH-17-1-0299, W81XWH-191-0263, and W81XWH-19-1-0067) to AES. SAW is supported by the National Institutes of Health (NIH) (R01 CA204881, R01 CA206026, and P30 CA56036), the Defense Congressionally Directed Medical Research Program W81XWH-17-PRCPR-TTSA, and Targeted Diagnostic & Therapeutics. SAW and AES were also supported by a grant from the庭Crowe Ann Diacont Memorial Foundation. SAW is the Samuel M.V. Hamilton Professor of Thomas Jefferson University. AZ and MC were supported by NIH institutional resources at Thomas Jefferson University for their continued support. This work was supported by a DeGregorio Family Foundation Award and a grant from the Translational Research & Pathology Core Facility.

Ethics Approval The study was approved by the Thomas Jefferson University Institutional Review Board (#18D.495) and Institutional Animal Care and Use Committee (#01529).

REFERENCES

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0739

740 BIOMARKERS DIVERGING BETWEEN TUMOR MUTATION BURDEN AND MICROSATELLITE INSTABILITY
1Jason Ding*, 2Nihir Patel. 1Mountain Lakes High School, Mountain Lakes, NJ, USA; 2Admera Health, South Plainfield, NJ, USA

Background DNA repair is a critical process to maintain DNA integrity. It is conducted by distinct pathways of genes, many of whose alterations are thought to result in genomic instability and hypermutability, ultimately contributing to tumorigenesis. Tumor Mutation Burden (TMB) and Microsatellite Instability (MSI) are considered as efficacy biomarkers for immunotherapy.1, 2 However, there has been little characterization of the association between DNA repair genes and TMB/MSI in cancer. This study aims to further understand DNA repair genes and evaluate the contribution of their alteration to TMB and MSI.

Methods We systematically analyzed 282 DNA repair genes involved in 20 DNA repair pathways. These genes were evaluated for mutations based on 274 sequenced colorectal tumor samples from the TCGA database. The functional impacts of these mutations were analyzed, and only damaging mutations were used for the subsequent analysis. The most frequently mutated genes were identified. The association between the damaging mutations and TMB/MSI status was calculated for each gene, and the significant genes were subject to further pathway enrichment analysis. We also compared the gene expression between TMB high and low as well as between MSI-H and MSI-L/MSS for each gene based on their RNAseq data. The potential associations with TMB/MSI high phenotypes were evaluated.

Results 94 genes were identified to be significantly mutated in TMB high, including all of the 26 genes that were significant in MSI-H. The genes are enriched in multiple pathways, including Fanconi anemia, Base excision repair, and Mismatch repair. At the expression level, 28 genes are significantly downregulated in TMB high samples while 35 genes in MSI-H, suggesting that the inactivation of these genes might be mediated by epigenetic abnormalities (figure 1). 10 genes,