immunotherapy response, there is a greater need to expedite the standardization of sample collection, processing, and bioinformatics in TMB assessment.

Ethics Approval This study was approved by the Providence St. Joseph Health Institutional Review Board, approval number STUDY2019000048.

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0072

73 ORTHOGONALLY AND FUNCTIONALLY VALIDATED ALGORITHM FOR DETECTING HLA LOSS OF HETEROZYGOSITY


Background Human leukocyte antigen (HLA) genes facilitate communication between tumor cells and the immune system through the cell surface presentation of a diverse set of peptides. HLA loss of heterozygosity (LOH) has been associated with reduced immune pressure on neoantigens and impaired response to checkpoint blockade immunotherapy. Although HLA LOH is emerging as a key biomarker for response to immunotherapy, few tools exist to detect HLA LOH. Moreover, the accuracy of these tools is not well understood due to lack of orthogonal validation approaches. Here, we briefly describe DASH (Deletion of Allele-Specific HLAs), an algorithm to detect HLA LOH from exome sequencing data, and present a three-pronged validation approach to assess its performance.

Methods In-silico evaluation of the limit of detection (LOD) of DASH was performed by deeply sequencing a tumor-normal paired cell line with HLA LOH and mixing reads at different proportions to simulate variable tumor purity and clonality. Direct genomic validation was performed using digital PCR (dPCR) with allele-specific primers targeting both predicted kept and lost alleles in ten patient samples and one cell line. Quantitative immunopeptidomics was performed to compare peptides presented by HLA alleles in tumor cells and adjacent normal cells. The relative increase or decrease of peptide presentation per allele was estimated by predicting the binding of each peptide to the patient-specific alleles.

Results DASH is a machine learning model built upon the HLA-enhanced ImmunoID NeXT Platform®. We validated the performance of DASH using three orthogonal approaches to better understand the factors driving sensitivity and specificity of the algorithm. Evaluation using cell line mixtures that simulate LOH at various dilutions helped establish the LOD of DASH. For fully clonal tumors, DASH had 100% sensitivity at all tumor purity levels above 8% and 100% specificity at tumor purity levels higher than 24%. Patient-specific and allele-specific dPCR assays provided sensitive, direct evidence of HLA LOH. All samples predicted to have HLA LOH by DASH with high confidence were confirmed by dPCR. Finally, a quantitative immunopeptidomics experiment in one patient with HLA LOH revealed a large decrease in the peptides presented by deleted alleles, revealing the functional implications of HLA LOH.

Conclusions HLA LOH detection methods need to be rigorously validated in order to be used as a clinical biomarker. Here, we introduced three methods to assess performance, demonstrated the strong predictive power of DASH, and highlighted the need to consider tumor purity in such assessments.

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0073

74 NOVEL APPROACH FOR PROFILING IMMUNE-TUMOR CELL INTERACTIONS AND MUTATIONS IN THE SAME TUMOR SECTION BY MULTIPLEX IMMUNOHISTOCHEMISTRY AND NGS IN IMMUNO-ONCOLOGY TRIALS

Nathan Riccitelli, Jennifer Bordeaux, Nancy Valencia*, Ju Young Kim, Sarah Johnson, Nathan Roscoe, James Santos, Justin Santos, Jacob Levy, Deepika Asrani, Tracie Cobb, Angela McIntosh, Xun Li, Shabnam Tangri, Reinhold Pollner, Naveen Dakappagari. Navigate BiPharma

Background Both proteins (e.g., PD-L1 IHC) and tumor mutation burden (NGS-based) are known to independently predict clinical response to anti-PD-1/PD-L1 therapies. In a meta-analysis of tumor specimens from 8135 patients treated with PD-1/PD-L1 blockers, multiplex fluorescence immunohistochemistry (mFIHC) had significantly higher diagnostic accuracy than PD-L1 IHC, tumor mutational burden (TMB), or gene expression profiling alone in predicting clinical response or equivalent to a multimodality approach (e.g., PD-L1IHC + TMB). While the benefits of combining mFIHC (tumor-immune interplay) and NGS approaches in selection of patients for next generation immunotherapies is appealing, tumor tissue is a key limiting factor for multimodality analyses in clinical trials. To address this critical limitation, we developed a novel approach for sequential profiling of tumor and immune cell interactions by 7-parameter mFIHC assays, followed by analyses of nucleic acid extracted from same tissue sections.

Methods Formalin-fixed paraffin-embedded (FFPE) tumor tissue and cell line blocks were sectioned, and then stained using mFIHC followed by isolation of nucleic acids, or direct isolation of total nucleic acids. NanoString, qPCR, and NGS were performed on isolated nucleic acids. Nucleic acid quality, transcript abundance, and TMB scores were compared before and after mFIHC staining.

Results mFIHC revealed a broad range of immune cell phenotypes and spatial interactions, including T cells, B cells, NK cells, monocytes, neutrophils, and their functional status. Isolation of testable quantities of DNA from mFIHC treated slides was achieved when using a DNA-only isolation method, and TMB scores were robust across tested conditions. Cell phenotypes identified by mFIHC were compared to TMB scores across the tested samples. Following mFIHC treatment, RNA yields were reduced relative to the non-mFIHC treated replicates, but still sufficient for optimal input into a 770-target NanoString gene expression panel. However, for mFIHC treated samples, transcript levels were not distinguishable from background for the assessed targets.

Conclusions In summary, integrating mFIHC testing and TMB analysis on the same samples allows for comprehensive biomarker evaluation. The real world benefits of the combined approach will be described in upcoming clinical trials.

REFERENCE


http://dx.doi.org/10.1136/jitc-2020-SITC2020.0074