Cellular therapies

Expansion with IL-15 increases cytotoxicity of γ9V82 T cells and is associated with higher levels of cytotoxic molecules and T-bet

1Pia Aehnlich*, 2Per Thor Straten, 1Ana Micaela Camaz Simoes, 1Sige Skadborg, 1Gitte Olofsson, 1Copenhagen University Hospital, Herlev, Denmark; 2University of Copenhagen, Herlev, Denmark

Background Adaptope cell therapy (ACT) is an approved treatment option for certain hematological cancers and has also shown success for some solid cancers. Still, benefit and eligibility do not extend to all patients. ACT with Vγ9V82 T cells is a promising approach to overcome this hurdle.

Methods In this study, we explored the effect of different cytokine conditions on the expansion of Vγ9V82 T cells in vitro.

Results We could show that Vγ9V82 T cell expansion is feasible with two different cytokine conditions: (a) 1000U/ml interleukin (IL)-2 and (b) 100U/ml IL-2+100U/ml IL-15. We did not observe differences in expansion rate or Vγ9V82 T cell purity between the conditions; however, IL-2/IL-15-expanded Vγ9V82 T cells displayed enhanced cytotoxicity against tumor cells, also in hypoxia. While this increase in killing capacity was not reflected in phenotype, we demonstrated that IL-2/IL-15-expanded Vγ9V82 T cells harbor increased amounts of perforin, granzyme B and granulysin in a resting state and release more upon activation. IL-2/IL-15-expanded Vγ9V82 T cells also showed higher levels of transcription factor T-bet, which could indicate that T-bet and cytotoxic molecule levels confer the increased cytotoxicity.

Conclusions These results advocate the inclusion of IL-15 into ex vivo Vγ9V82 T cell expansion protocols in future clinical studies.

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0764

Contextual secretion of nanoscale interleukin (IL)-12 by CAR T cells for the treatment of cancer

1Zhilien Yang*, 1Maggie Bobbins, 2Hana Choi, 3Ofir Stefanson, 1Jin Yang, 1Kristina Magallanes, 1Bing Wang, 3Lei Stanley Qi, 1Francesco Marincola. 1Refuge Biotechnologies, MENLO PARK, CA, USA; 2Refuge, MENLO PARK, CA, USA; 3Stanford University, Palo Alto, CA, USA

Background Interleukin(IL)-12 activates T cells and macrophages pivoting the switch that turns chronic into acute inflammation and results in cancer rejection. However, despite formidable antitumor effects in preclinical models, its clinical utilization is limited by severe systemic toxicity. Here, we present a conditional, antigen-dependent, non-editing CRISPR-activation (CRISPRa) circuit (RB-2-12) that purposefully induces minimally effective doses of IL-12 for autocrine activation of CAR-T.

Methods RB-2-12 is a CAR T cell engineered to express the IL-12 heterodimer via conditional transcription of its two endogenous subunits p35 and p40. The circuit includes a lentiviral constructs encoding an anti-HER2 (4D5) single chain variable fragment, with CD28 and CD3ζ co-stimulatory domains linked to a tobacco etch virus (TEV) protease and two single guide RNAs (sgRNA) targeting the promoter region for IL-12A or IL-12B. A second constructs encodes linker for activation of T cells, complexed to nuclease-deactivated/dead Cas9 (dCas9)-VP64-p65-Rta transcriptional activator (VPR) via a TEV-cleavable linker (LdCV). Activation of CAR brings CAR-TEV in proximity to LdCV releasing dCas9 for nuclear localization to the regulatory regions and conditionally and reversibly induce nanoscale expression of the p70 heterodimer. RB-2-12 was compared in vitro to control (cRB-2-12, lacking the IL-12 sgRNAs).

Results RB-2-12 induced autocrine production of low concentrations of IL-12 upon exposure to HER2+ FaDu cancer cells resulting in significantly enhanced production of interferon (IFN)-γ, cytotoxic activity and proliferation (figure 1a). These effects were comparable to co-culturing conventional HER2-specific CAR-T cells with a modified FaDu cell line expressing high doses of IL-12 (figure 1b).

Conclusions We have previously shown that tandem suppression of PD-1 expression upon HER-2 CAR activation using CRISPR interference enhances anti-cancer properties of CAR-T cells in vivo against HER2-FaDu xenografts by promoting their persistence and long-term tumor colonization (companion abstract submitted to SITC annual meeting). We hypothesize that addition of a Th1 polarizing component such as IL-12 will exponentially increase the efficacy of reprogrammed CAR-T cells by combining enhancement of effector functions to cellular fitness. At the same time, the autocrine effects of nanoscale IL-12 production limit the risk of off-tumor leakage and systemic toxicity. Such cumulative synthetic biology approaches are currently investigated in vitro and in vivo model systems. Current work is testing the effectiveness of RB-2-12 in vivo against FaDu xenografts.

Acknowledgements None

Trial Registration N.A.

Ethics Approval Not Applicable

Consent Not Applicable

REFERENCES

1. None

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0765