CAR T CELLS UNDERGOING EPIGENETIC REPROGRAMMING BY LOW-DOSE DECITABINE ENHANCES PERSISTENT ANTI-TUMOR EFFICACY IN VIVO

Yao Wang*, Weidong Han, Chuan Tong, Zhijianag Wu, Hanner Dai. Chinese PLA general hospital, Beijing, China

Background Anti-CD19-directed chimeric antigen receptor (CAR) T-cell therapy has had a resounding effect on the treatment of B-ALL. However, CAR T cells have been less effective against B-cell non-Hodgkin lymphoma (B-NHL), in part because they become a exhausted state triggered by chronic antigen stimulation and characterized by upregulation of inhibitory receptors and loss of effector function.1-4 It has recently been demonstrated that de novo DNA methylation promoted T-cell exhaustion, whereas methylation inhibition enhanced ICB-mediated T-cell rejuvenation in vivo.5 6 FDA-approved DNA demethylating agents, such as decitabine (DAC), may provide a means to modify exhaustion-associated DNA methylation programs that restrict ICB-responsiveness.

Methods We treated CAR (CAR-CD19-expressing) T cells with low-dose DAC (dCAR T cells), to determine its effects on antitumor activities, exhaustion- and memory-associate cell phenotype change, cell cytokine production, and cell proliferation. Its impact on antitumor activities was evaluated in vitro functional assays and mouse in vivo studies. We also conducted western blot, flow cytometry, methylation analysis, RNA in situ hybridization and high throughput RNA sequencing to determine the underlying mechanisms of dCAR T cell function.

Results The low-dose, short-term DAC treatment in vitro enhanced the central memory (Tcm) population and the ration of CD4/CD8, and induced degradation of DNMT3a.CAR T cell treated by DAC developing into less-differentiation status by enhancing memory. dCAR T cells exhibit enhanced antitumour reactivity and the maintenance of a memory-like phenotype at low effector:target ratios. Especially shown by the ‘stress test’, the dCAR T cells at very low doses could efficiently control tumours with a very large burden, and have effective recall responses upon tumour re-challenge in vivo. Importantly, the dCAR T cells maintained a higher proportion of cells with a memory phenotype than did the CAR T cells under long-term tumour stimulation. Transcription of gene sets involved in memory maintenance, proliferation, cytokine production and anti-inhibitor processes was triggered by antigen-expressing target cells upon DAC exposure before antigen stimulation. dCAR T cells avoided the exhaustion programme induced during tumour cell stimulation; they did not upregulate the expression of genes encoding inhibitory receptors and retained relatively high expression of memory related transcription factors and genes.

Conclusions CAR T cells underwent DNA reprogramming after DAC treatment, which induced significant sustained cell expansion, cytotoxicity, and cytokine production and reduced exhaustion after antigen exposure.

Acknowledgements We thank Professor Lin Xin of Tsinghua University and Professor Mingzhou Guo of Chinese PLA General Hospital for support of data analysis.

REFERENCES

REFERENCES

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0768

sought to develop fungus-specific chimeric antigen receptor (CAR) T cells as a novel immune augmentation strategy to target IFIs including invasive aspergillosis. To target fungal pathogens, we fused the pattern-recognition receptor Dectin-1 to activate T cells via chimeric CD28 and CD3-ζ domains upon binding to β-1,3-glucan carbohydrates in the fungal cell wall. The generated Dectin-1 CAR+ T cells showed high specificity for β-1,3-glucan and inhibited the growth and branching of AF gernmings in an in-vitro co-culture assay. However, we found poor efficacy of Dectin-1 CAR+ T cells against mature AF hyphae, likely due to changes in the fungal cell wall that hamper T-cellular binding to β-1,3-glucan carbohydrates. To overcome this limitation, we have recently developed an AF-specific CAR (AF-CAR) based on a monoclonal antibody which recognizes a surface epitope of mature AF hyphae.

Methods Lentiviral vectors were used to generate AF-CAR expressing T cells from human peripheral blood mononuclear cells. Heat killed AF-293 hyphae was used for co-culture studies with No DNA T cells, and AF-CAR expressing T cells. Cell clusters, binding with AF hyphae were noticed in AF-CAR incubated wells whereas no such cell cluster were observed in NoDNA T cells incubated wells.

Results When co-incubated with AF hyphae, AF-CAR+ T cells efficiently targeted mature hyphae and formed lytic synapses with hyphal filaments. The released cytolytic granules damaged hyphae and controls branch node formation. Furthermore, exposure to AF hyphae stimulated significant upregulation of activation markers CD69 and CD154 on AF-CAR+ T cells. The activated CAR T cell secretes proinflammatory cytokines which can boost innate immune system to fight against IFI.

Conclusions In summary, these results indicate that we have successfully generated a novel anti-Aspergillus CAR construct with good in-vitro targeting efficacy against mature AF hyphae. After thorough evaluation of fungicidal activity, cytokine response patterns, and release of cytotoxic mediators, we plan to embark on preclinical tolerability and efficacy studies in a murine model of invasive pulmonary aspergillosis. Thus, we report the production of Aspergillus specific CAR T cells to provide long term protection to immunocompromised patients, such as AML patients and HSCT recipients, from invasive Aspergillus infections.

Acknowledgements This study was supported by NIAID-R33 AI127381.

Ethics Approval This study was approved by IBC committee, University of Texas MD Anderson Cancer Center, Houston, Texas, 77030.

REFERENCES

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0768
ANALYSIS OF GUT MICROBIOME IN PATIENTS RECEIVING ADOPTIVE T-CELL THERAPY (ACT) ACROSS DIFFERENT SOLID TUMOUR TYPES

Arantzuza Barquin García*, Sergio Ruiz, Paloma Navarro, Juan Francisco Rodríguez-Moreno, Elena Sevilla, Monica Yague, Sandra Amarilla, Jesús García-Donas. Centro Integral Oncológico Clara Campal, Madrid, Spain

Background Tumour Infiltrating Lymphocytes (TILs) is a modality of ACT under development in solid tumours. Unfortunately, prior lymphodepletion is a key step that frequently requires the administration of antibiotics and antifungals for long periods of time. Although there is evidence that gut microbiome may influence tumour response in patients treated with checkpoint-inhibitors, it has not been extensively studied in ACT.

Methods Analysis of gut microbiome at three different times (T1: before lymphodepletion, T2: before TIL infusion and T3: day +15) has been performed in patients treated with ACT between 2018 and 2020. The composition and structure of the sampled microbial communities was assessed through the amplification and sequencing the V3-V4 variable regions of the 16S rRNA gene. The Illumina Miseq sequencing 300×2 approach was used. Taxonomic assignment of phylotypes was performed using a Bayesian Classifier trained with Silva database version 132 (99% OTUs full-length sequences). The following metrics were measured: observed OTUs (community richness), evenness (Pielou’s index) and Shannon’s diversity index. Differential abundance of taxa was tested using ANCOM test and Kruskal Wallis test.

Results A total of 21 patients have been treated with TILs between 2018 and 2020 at our institution. 67% were female. Median age was 43 (range 26–70 years). All patients had stage IV pre-treated solid tumours: 55% cervical cancer, 33% melanoma, 10% lung adenocarcinoma and 5% head and neck cancer. Median previous treatment lines was 3 (range 2–4). Analysis of gut microbiome has been performed in 3 of these patients: one achieved PR, one progressed and the third one suffered an unexpected death. 971 phylotypes were detected. Analysis revealed differences in terms of observed OTUs, evenness and Shannon’s index when comparing T1 and T2 with T3. At T3 a tendency towards less diversity and evenness was observed when compared with T1 and T2 (H 3.0, p-value 0.083, not statistically significant). Comparing the distribution of considered taxa in ACT responders vs. non-responders, we observed significant differences for both class (Bacteroidia, Clostridia and Gammaproteobacteria) and order (Bacteroidales, Lactobacillales, Clostridiales and Enterobacteriales) levels.

Conclusions A deep change in gut microbiome composition along TILs therapy was observed. Though preliminary, differences between responders and non-responders were observed but should be confirmed in larger populations.