Analysis of gut microbiome in patients receiving adoptive T-cell therapy (ACT) across different solid tumour types

Arantzaa Barquin García*, Sergio Rúa, Paloma Navarro, Juan Francisco Rodríguez-Moreno, Elena Sevillano, Monica Yague, Sandra Amarilla, Jesus Garcia-Donas. Centro Integral Oncológico Clara Campal, Madrid, Spain

Background: Tumour infiltrating lymphocytes (TILs) is a modality of ACT under development in solid tumours. Unfortunately, prior lymphodepletion is a key step that frequently requires the administration of antibiotics and antifungics for long periods of time. Although there is evidence that gut microbiome may influence tumour response in patients treated with checkpoint-inhibitors, it has not been extensively studied in ACT.

Methods: Analysis of gut microbiome at three different times (T1: before lymphodepletion, T2: before TIL infusion and T3: day +15) has been performed in patients treated with ACT between 2018 and 2020. The composition and structure of the sampled microbial communities was assessed through the amplification and sequencing the V3-V4 variable regions of the 16S rRNA gene. The Illumina Miseq sequencing 300×2 approach was used. Taxonomic assignment of phylotypes was performed using a Bayesian Classifier trained with Silva database version 132 (99% OTUs full-length sequences). The following metrics were measured: observed OTUs (community richness), evenness (Piélov’s index) and Shannon’s diversity index. Differential abundance of taxa was tested using ANCOM test and Kruskal Wallis test.

Results: A total of 21 patients have been treated with TILs between 2018 and 2020 at our institution. 67% were female. Median age was 43 (range 26–70 years). All patients had stage IV pre-treated solid tumours: 55% cervical cancer, 33% melanoma, 10% lung adenocarcinoma and 5% head and neck cancer. Median previous treatment lines was 3 (range 2–4). Analysis of gut microbiome has been performed in 3 of these patients: one achieved PR, one progressed and the third one suffered an unexpected death. 971 phylotypes were detected. Analysis revealed differences in terms of observed OTUs, evenness and Shannon’s index when comparing T1 and T2 with T3. At T3 a tendency towards less diversity and evenness was observed when compared with T1 and T2 (H 3.0, p-value 0.083, not statistically significant). Comparing the distribution of considered taxa in ACT responders vs. non-responders, we observed significant differences for both class (Bacteroidia, Clostridia and Gammaproteobacteria) and order (Bacteroidales, Lactobacillales, Clostridiales and Enterobacteriales) levels.

Conclusions: A deep change in gut microbiome composition along TILs therapy was observed. Though preliminary, differences between responders and non-responders were observed but should be confirmed in larger populations.

REFERENCE

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0770
Abstract 771 Figure 2
REP treatment of populations with high initial cell count over 3 weeks. This graph corresponds to table 1. 6 out of 15 populations achieved $\geq 1\times 10^6$ cells after 4 weeks of initial culturing and were subsequently REP-treated with anti-CD3/anti-CD28-coated magnetic Dynabeads (Life Technologies) on 24-well plates. REP-treated populations have trendlines with positive slopes across the 3 weeks of REP expansion, indicating positive growth rates. Negative controls (-) without REP treatments have near-flat trendlines indicating lack of growth. REP was successful in expanding all 6 TIL populations. At week 3 post-REP, cells were collected and counted via hemocytometer.

Methods TILs are being expanded and cultured from UPS and MFS primary tumors with various PD-L1 levels. To initiate TIL culturing, bulk tumors were fragmented into 1mm, seeded at 1 fragment/well, and cultured in interleukin-2 supplemented complete media. Due to insufficient cell yields for characterization, rapid expansion protocol (REP) with anti-CD3/anti-CD28 co-stimulating beads was subsequently employed for further expansion.

Results Of 4 MFS cases processed to date, 15 TIL populations were derived and cultured (figure 1). Only 6 in 15 TIL cultures obtained $\geq 1\times 10^6$ cells and are considered high initial cell count populations. 9 in 15 cultures obtained $<1\times 10^6$ cells and are considered low initial cell count populations. REP successfully expanded 14 out of 15 TIL populations, each which impedes their studies. We first aim to robustly expand TILs to sufficient numbers.

Abstract 771 Table 1
Table 1 corresponds to graphed analysis in figure 2. 6 populations that achieved $\geq 1\times 10^6$ cells after 4 weeks of initial culturing were treated with anti-CD3/anti-CD28 coated beads on 24-well plates over 3 weeks. Total cells seeded before REP, total cells collected after REP, and fold-expansion calculated are shown. At week 0, all populations were seeded at a density of 8x10^4 cells per well, except for TIL 164 1A and TIL 164 1B which were seeded at 1.1x10^6 cells and 1.4x10^6 cells per well, respectively. Populations were expanded via addition of beads at a bead to cell ratio of 1:1.

Abstract 771 Table 2
Table 2 corresponds to graphed analysis in figure 3. 9 populations that achieved $<1\times 10^6$ cells after 4 weeks of initial culturing were treated with anti-CD3/anti-CD28 coated beads on 96-well plates over 4 weeks. Total cells seeded before REP, total cells collected after REP, and fold-expansion calculated are shown. At week 0, populations were seeded at a density of 5x10^4 cells per well, except for populations with $<8\times 10^4$ cells in total, which were seeded at all available cells per well. For example, TIL214 18 was seeded at 6x10^4 cells per well. Populations were expanded via addition of beads at a bead to cell ratio of 1:1; once at week 0 and once more as re-stimulation at week 2. At week 4 post-REP, cells were collected, counted, and fold-expansion was determined. TIL225 2B did not yield any growth under 10X light microscope observation. Lack of cells and cell debris was observed; hence this population was not collected. Cell counts performed via hemocytometer. Negative controls (-) were only allocated for certain populations with sufficient initial cell availability.

Obtaining between 7.8 to 268.0 x10^6 cells (tables 1 and 2, figures 2 and 3).

Conclusions Sarcoma infiltrates are difficult to culture and their roles remain largely unstudied. Our results demonstrate anti-CD3/anti-CD28 co-stimulation’s capability in expanding 93.3% of TILs and established a robust method of expansion. Future investigation of lineage markers, cytokine profiles, and cytotoxicity aims to identify immunological differences between UPS and MFS. TILs will be primed with memory-inducing cytokines (IL-7, IL-12, IL-15, IL-21) to modulate
A POTTENT AND OFF-THE-SHELF ONK CELL THERAPY PRODUCT TARGETS HER2+ CANCER CELLS AND RESISTS SUPPRESSIVE TUMOR MICROENVIRONMENT

1Hao-Kang Li*, 2Ching-Wen Hisao, 3Sen-Han Yang, 1Hsiu-Ping Yang, 1Tai-Sheng Wu, 1Zih-Lun Lo, 1Shih-Chia Hsiao. 1Acepodia Biotechnologies Ltd., New Taipei City, Taiwan, Province of China; 2Acepodia Biotech Inc., Vallejo, CA, USA

Background Autologous or allogeneic natural killer (NK) cells possess efficient cytotoxicity against tumor cells without severe side effects such as CRS or graft-versus-host disease (GvHD). In addition to chimeric antigen receptor (CAR) strategy, anti-body-cell conjugates (ACC) platform provides more efficient way to arm NK cells with binding specificity and enhanced potency against target cells. In this work, we develop a NK cell therapy product ACE1702, a novel NK cell line oNK conjugated with trastuzumab, and assess its potency against HER2+ solid tumors.

Methods oNK cells were covalently conjugated with monoclonal antibody Trastuzumab after sublethal irradiation by our patented antibody-cell conjugates (ACC) platform to become our cryopreserved final product ACE1702 compliant with current good manufacturing practice (cGMP). Function of ACE1702 was validated by real-time xCELLigence analyzer and MITT assay in vitro. Efficacy of intraperitoneally (i.p.) delivered ACE1702 was evaluated in tumor-bearing female immune compromised NSG mice. Characterization of ACE1702 was analyzed by flow cytometry.

Results We demonstrated that the trastuzumab-armed oNK cells, ACE1702, exerted human epidermal growth factor 2 (HER2) binding specificity and enhanced cytotoxicity against various types of cancer cells with different grade of HER2 expressions compared to control oNK cells in vitro. In vivo results in human ovarian cancer cell line SK-OV-3-bearing xenograft mouse model further supported the in vivo observations. Of note, ACE1702 also displayed a better cytotoxicity against HER2+ cancer cells than trastuzumab and its derived antibody-drug conjugate. ACE1702 also remained cytotoxicity against cancer cells in the suppressive tumor microenvironment. Characterization revealed a preferential expression of NK activation receptors, and conjugation of trastuzumab with cell membrane proteins responsible for NK activity capacitated ACE1702 with enhanced cytotoxicity. These results underscore the potency of ACE1702 in eradication of cancer cells.

Conclusions Here we introduced a novel trastuzumab-modified oNK cell product with enhanced specificity against myriad types of HER2+ cancers. Selective conjugation of trastuzumab with membrane proteins contributing to NK activation conferred ACE1702 with enhanced cytotoxicity even in the suppressive tumor microenvironment.

Acknowledgements

REFERENCES

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0771

773 ADOPTIVE CELL THERAPY RESPONSE IN MELANOMA IS MEDIATED BY STEM-LIKE CD8 T CELLS

Sri Krishna*, Frank Lowery, Amy Copeland, Stephanie Goff, Grégoire Altan-Bonnet, Paul Robbins, Steven Rosenberg. National Cancer Institute, Bethesda, MD, United States

Background Adoptive T cell therapy (ACT) utilizing ex vivo-expanded autologous tumor infiltrating lymphocytes (TILs) can result in complete regression of human cancers. Successful immunotherapy is influenced by several tumor-intrinsic factors. Recently, T cell-intrinsic factors have been associated with immunotherapy response in murine and human studies. Analyses of tumor-reactive TILs have concluded that anti-tumor neoantigen-specific TILs are enriched in subsets defined by the expression of PD-1 or CD39. Thus, there is a lack of consensus regarding the tumor-reactive TIL subset that is directly responsible for successful immunotherapies such as ICB and ACT. In this study, we attempted to define the fitness landscape of TIL-enriched infusion products to specifically understand its phenotypic impact on human immunotherapy responses.

Methods We compared the phenotypic differences that could distinguish bulk ACT infusion products (IP) administered to patients who had complete response to therapy (complete responders, CRs, N = 24) from those whose disease progressed following ACT (non-responders, NRs, N = 30) by high dimensional single cell protein and RNA analysis of the IP. We further analyzed the phenotypic states of anti-tumor neoantigen specific TILs from patient IP (N = 26) by flow cytometry and single cell transcriptomics.

Results We identified two CD8+ TIL populations associated with clinical outcomes: a memory-progenitor CD39-negative stem-like TIL (CD39-CD69-) in the IP associated with complete cancer regression (overall survival, P < 0.0001, HR = 0.217, 95% CI 0.101 to 0.463) and TIL persistence, and a terminally differentiated CD39-positive TIL (CD39+CD69+) population associated with poor TIL persistence post-treatment. Although the majority (>65%) of neoantigen-reactive TILs in both responders and non-responders to ACT were found in the differentiated CD39+ state, CR infusion products also contained a pool of CD39- stem-like neoantigen-specific TILs (median = 8.8%) that was lacking in NR infusion products (median = 23.6%, P = 1.86 x 10-5). Tumor-reactive stem-like T cells were capable of self-renewal, expansion, and persistence, and mediated superior anti-tumor response in vivo.

Conclusions Our results support the hypothesis that responders to ACT received infusion products containing a pool of stem-like neoantigen-specific TILs that are able to undergo prolific...