common ICIs were pembrolizumab, nivolumab, followed by ipilimumab-nivolumab, ipilimumab, and durvalumab. 81 patients of 218 received antibiotics within 6 months of receiving checkpoint inhibitors. Of antibiotics administered, the most common classes were cephalosporins (86%), fluoroquinolones (28%), and glycopeptides (23%) with substantial overlap. Overall survival and progression-free survival was improved for those who did not receive antibiotics prior to ICI therapy (median OS 6.5 vs. 2.3 years, HR 0.36, p<0.0001; median PFS 1.1 vs 0.5 years, HR 0.6, p=0.0027) (figure 1 and 2 respectively). Linear regression showed no significant association between antibiotic use prior to ICI use and age, sex, race, ICI type, or ECOG status.

Conclusions This data adds to the growing body of knowledge that the use of antibiotics prior to ICI treatment leads to inferior overall and progression-free survival.

Acknowledgements We would like to thank the Roman Janarow, UC Cancer Center, the University of Cincinnati Division of Hematology and Oncology, Department of Internal Medicine of the University of Cincinnati, and the University of Cincinnati Medical Center for their continued support.

Ethics Approval IRB 2019-0610

REFERENCES

A ROLE FOR IMMUNE CHECKPOINT BLOCKADE TO ENHANCE T CELL-MEDIATED RESPONSES IN COMBINATION WITH CHEMOTHERAPY IN OESOPHAGEAL ADENOCARCINOMA

Maria Davern*, Joanne Lyonsg, Andrew Sheppard, Stephen Maher, Noel Donlon, John Reynolds, Fiona Connell, Cornell Hayes, Ross King, Anshul Bhardwaj. Trinity College Dublin, Dublin, Ireland

Background Combining immune checkpoint inhibitors (ICIs) with immunogenic chemotherapies is a promising approach in
oesophageal adenocarcinoma (OAC) to convert ‘cold’ tumours to ‘hot’ tumours expanding the efficacy of ICIs to a greater spectrum of patients. However, there is a vast array of immune checkpoints (ICs) expressed by T cells and the effect of ICIs in combination with chemotherapy regimens is largely unknown.

Methods

The expression profile of a range of ICs on circulating and tumour-infiltrating T cells was assessed using flow cytometry prior to and post-neoadjuvant treatment and correlated with clinical parameters (n=20). PBMCs isolated from OAC blood were treated with single agent ICIs alone (single agent anti-PD-1, anti-PD-L1, anti-A2aR and anti-TIM-3 inhibition) and in combination with FLOT (5-Fluorouracil, oxaliplatin and docetaxel) and CROSS (carboplatin and paclitaxel) chemotherapy regimens. The production of anti-tumour cytokines by T cells was assessed in vitro by flow cytometry (n=6).

Results

In the treatment-naïve and post-treatment setting, a range of ICs were expressed by circulating T cells and were significantly increased on tumour-infiltrating T cells, which included PD-L1, PD-L2, CD160, PD-1, CTLA-4, TIGIT, TIM-3, LAG-3, A2aR and ICOS (p<0.05) (figure 1). Pre-treatment circulating PD-1+ T cells positively correlated with pathological nodal status (p<0.05), (figure 2). Whereas tumour-infiltrating CD3+CTLA-4+ cells positively correlated with nodal metastasis and lymphovascular invasion (p<0.05). The percentage of tumour-infiltrating CD3+CTLA-4+ and CD3+ICOS+ cells was significantly lower post-neoadjuvant treatment (p<0.05) (figure 3). However, post-neoadjuvant treatment circulating CD3+PD-1+ cells and CD3+PD4+TIGIT+ cells positively correlated with a better treatment response, determined by PET/CT (p<0.05), (figure 4). ICIs enhanced T cell production of anti-tumour cytokines IL-2 and IFN-γ alone and in combination with chemotherapy in vitro from treatment-naive OAC patients (p<0.05).

Conclusions

T cells expressing ICs in circulation and infiltrating OAC tissue were adverse prognostic markers in the pre-treatment setting, perhaps due to their role in enabling tumour immune evasion and subsequent tumour progression. In contrast, T cells expressing ICs post-chemotherapy treatment in peripheral circulation were favorable prognostic markers. ICs are typically expressed by ‘hot’ tumours therefore, the presence of ICs in the post-treatment setting may be
Abstract 776 Figure 4

The percentage of circulating CD3+PD-1+ cells and CD3+CD4+TIGIT+ cells positively correlated with a better treatment response in the post-treatment setting. The percentage of CD3+, CD3+CD4+ and CD3+CD8+ cells expressing ICs in peripheral circulation and infiltrating OAC tissue in the post-neoadjuvant treatment setting was correlated with each other, patient demographics and clinical features of the tumour. Patient demographics and clinical features included gender (female=0, male=1), age, tumour type (OAC=0 and OGJ=1), neo-adjuvant treatment received (CROSS=0 and FLOT=1), treatment response (determined by radiographic features using PET/CT), tumour regression grade (TRG), clinical tumour stage and nodal involvement, pathological tumour stage and nodal involvement, body mass index (BMI kg/m2), peri-neural invasion, serosal invasion and lymph-vascular invasion. BMI and weight measurement was recorded post-treatment. Spearman correlation. Only significant data shown.

as a result of an induced-anti-tumour immune response following immunogenic chemotherapy/chemoradiation therapy and may be a useful strategy for stratifying patients into chemotherapy/chemoradiotherapy responders or non-responders. A therapeutic rationale is also highlighted for combining ICIs with chemotherapy regimens in OAC patients to enhance anti-tumour T cell-mediated responses and potentially boost response rates to chemotherapy treatment.

Acknowledgements We would like to thank all the patients who kindly donated their samples to our research.

Ethics Approval The work was performed in accordance with the Code of Ethics of the World Medical Association (Declaration of Helsinki) for experiments involving human samples. The work was performed in accordance with the Code of Ethics of the World Medical Association (Declaration of Helsinki) for experiments involving human samples.

Consent Patients provided informed consent for sample and data acquisition, and the study received full ethical approval from the St. James’s Hospital/AMNCH Ethical Review Board.

REFERENCES

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0776

Abstract 779

PRECLINICAL STUDY USING A GLUTAMATERGIC SIGNALLING AND IMMUNE-CHECKPOINT INHIBITORS IN A SPONTANEOUS MELANOMA PRONE MOUSE MODEL

Kevin Eddy*, 1Christina Marinaro, 1Maryam Rasheed, 1Joseph Campagnolo, 1Xiaoxuan Zhong, 1Mohamad Eddin, 1Raj Shah, 1Kajaal Gupta, 1Jesus Diaz, 1Andrew Zloza, 1Suzie Chen. 1Rutgers University, Piscataway, NJ, USA; 2Rush University, Chicago, IL, USA

Background Much progress has been made in understanding melanoma pathogenesis within the last few years through targeted therapies and immunotherapies. However, resistance to small molecule inhibitors remains an obstacle. Immunotherapies such as checkpoint inhibitors against PD-1/PD-L1 lead to durable responses but only in a subset of melanoma patients. Mouse models reflecting human cancers provide invaluable tools towards the translation of basic science discoveries to clinical therapies, but many of these in vivo studies are short-term and do not accurately mimic patient circumstances. Our lab has a melanoma-prone transgenic mouse model which is driven by ectopic expression of a normal neuronal receptor, metabotropic glutamate receptor 1 (GRM1). This mouse model recapitulates melanoma development and progression frequently associated with melanoma patients, where aberrant GRM1 expression is detected. We have shown that in >90% of late-stage melanoma patients, there is atypical GRM1 mediated signaling and expression.

Methods In this study, we are using these mice, TGS, to determine the long-term, 18-week, therapeutic consequences of troriluzole, a prodrug for riluzole, which is an inhibitor of glutamatergic signaling plus anti-PD-1, an immune-checkpoint inhibitor. Tumor burden is monitored every 6 weeks for 18 weeks using a small imaging system, IVIS and tumor burden is quantified using ImageJ software. Blood, lymphoid, and tumor samples were collected at several time points during the study for molecular, and immune analyses.

Results Preliminary results suggest a gender-biased treatment response and that the combination of troriluzole and anti-PD-1 is more efficacious than either agent alone. In males, a 43.9% reduction in tumor burden was observed while in females there was a 29.6% increase in tumor burden in the combination group compared to vehicle. In concordance, after the removal of the treatment modality, the male mice in the combinatorial group survived 42 days longer compared to vehicle controls with sustained tumor reduction by 68.3%. In female mice no significant advantage in survival or reduction in tumor burden was noted.

Conclusions N/A

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0778

Abstract 778

IMMUNE CHECKPOINT BLOCKADE IMPACTS THE SUPPRESSIVE PHENOTYPET AND FUNCTION OF REGULATORY T CELLS IN AN ENDOGENOUS MOUSE LYMPHOMA MODEL

Vera Bauer*, 1Fatima Ahmetic, 1Martin Roexen, 1Ralph Mockat, 1Ralph Mockat. 1Helmholtz-Zentrum Muenchen, Munich, Germany; 2Eberhard Karls-Universitaet Tuebingen, Tuebingen, Germany

Background Antibodies against programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) have become established part of anti-cancer therapy.

Methods We applied anti-PD-1 (PD-L1) and anti-CTLA-4 (CTLA-4) antibodies to a spontaneous B lymphoma model of male and female CD1 mice. Lymphoma growth was measured using IVIS software, T cell subset measurements were performed using FACSCalibur cell sorter.

Results Anti-PD-1 and anti-CTLA-4 did not influence lymphoma burden in males, but significantly improved survival in females. Anti-PD-1 and anti-CTLA-4 treatment did not alter regulatory T cell (TREG) numbers, but significantly reduced TREG suppressive function in females.

Conclusions Anti-PD-1 and anti-CTLA-4 are effective in female mice and reduce TREG suppressive function in a spontaneous B lymphoma model.

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0778