Abstract 778

PRECLINICAL STUDY USING A GLUTAMATERGIC SIGNALING AND IMMUNE-CHECKPOINT INHIBITORS IN A SPONTANEOUS MELANOMA PRONE MOUSE MODEL

1Kevin Eddy*, 1Christina Marinaro, 2Maryam Rasheed, 1Joseph Campagnolo, 1Xiaoxuan Zhong, 1Mohamed Edin, 1Raj Shah, 1Kajal Gupta, 2Jesus Diaz, 2Andrew Zloza, 1Suzeie Chen. 1Rutgers University, Piscataway, NJ, USA; 2Rush University, Chicago, IL, USA

Background Much progress has been made in understanding melanoma pathogenesis within the last few years through targeted therapies and immunotherapies. However, resistance to small molecule inhibitors remains an obstacle. Immunotherapies such as checkpoint inhibitors against PD-1/PD-L1 lead to durable responses but only in a subset of melanoma patients. Mouse models reflecting human cancers provide invaluable tools towards the translation of basic science discoveries to clinical therapies, but many of these in vivo studies are short-term and do not accurately mimic patient circumstances. Our lab has a melanoma-prone transgenic mouse model which is driven by ectopic expression of a normal neuronal receptor, metabotropic glutamate receptor 1 (GRM1). This mouse model recapitulates melanoma development and progression frequently associated with melanoma patients, where aberrant GRM1 expression is detected. We have shown that in >90% of late-stage melanoma patients, there is atypical GRM1-mediated signaling and expression.

Methods In this study, we are using these mice, TGS, to determine the long-term, 18-week, therapeutic consequences of troriluzole, a prodrug for riluzole, which is an inhibitor of glutamatergic signaling plus anti-PD-1, an immune-checkpoint inhibitor. Tumor burden is monitored every 6 weeks for 18 weeks using a small imaging system, IVIS and tumor burden is quantified using ImageJ software. Blood, lymphoid, and tumor samples were collected at several time points during the study for molecular, and immune analyses.

Results Preliminary results suggest a gender-biased treatment response and that the combination of troriluzole and anti-PD-1 is more efficacious than either agent alone. In males, a 43.9% reduction in tumor burden was observed while in females there was a 29.6% increase in tumor burden in the combination group compared to vehicle. In concordance, after the removal of the treatment modality, the male mice in the combinatorial group survived 42 days longer compared to vehicle controls with sustained tumor reduction by 68.3%. In female mice no significant advantage in survival or reduction in tumor burden was noted.

Conclusions N/A

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0778

Abstract 779

IMMUNE CHECKPOINT BLOCKADE IMPACTS THE SUPPRESSIVE PHENOTYPE AND FUNCTION OF REGULATORY T CELLS IN AN ENDOGENOUS MOUSE LYMPHOMA MODEL

1Vera Bauer*, 2Fatima Ahmetlic, 3Martin Roedken, 1Ralph Mockat, 1Ralph Mockat. 1Heinrich-Hertz-Zentrum Muenchen, Munich, Germany; 2Eberhard-Karls-Universitaet Tuebingen, Tuebingen, Germany

Background Antibodies against programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) have become established part of anti-cancer therapy.
Quantitative Cell-Based Bioassays to Advance Validation of the Combinatorial Effect of A468

However, the mechanisms contributing to the therapeutic success have not been entirely uncovered by now. Here we focus on the impact of PD-1/CTLA-4-blocking antibodies on regulatory T cells (Tregs), which are known to be involved in tumor immune evasion in many cancer types.

Methods To evaluate how Tregs are affected by anti-PD-1/CTLA-4 therapy, we used a MYC-transgenic mouse model of spontaneously arising B-cell lymphoma, which can be effectively treated by immune checkpoint inhibition. Data were acquired by flow cytometry.

Results As earlier shown, Tregs were involved in immune escape of MYC tumors. The Treg to effector T cell (Teff) ratio was elevated within the CD4-positive cell compartment. Tumor-infiltrating Tregs were predominately thymic Tregs, which recognized overexpressed tumor-derived self-peptides in an MHC class II-restricted manner and showed upregulated expression of activation markers, Foxp3, CD25 and IL-10. To examine whether these phenotypic alterations correlated with the immunosuppressive capability of Tregs, an in vitro suppression assay was established. In this setting, MYC Tregs turned out to suppress proliferation and IFN-γ release of Teff cells more effectively than wildtype Tregs. The suppression observed in vitro was mediated by cell contacts and IL-10. Further suppressive mechanisms are likely to play a role, such as competition for MHC-II ligands and a consumption of IL-2. To investigate if immune checkpoint blockade interferes with these Treg-dependent immunosuppressive pathways, MYC mice were treated with a combination of anti-PD-1 and anti-CTLA-4 antibodies. Tregs from treated MYC mice showed decreased expression of CD69, CD137, Foxp3, CD25 and IL-10 compared to Tregs from untreated MYC mice. This correlated with a lower suppressive capacity of Tregs from treated animals in the in vitro suppression assay.

Conclusions Taken together, the data show that immune checkpoint blockade impairs the development of the suppressive phenotype of intratumoral Tregs. Thus, apart from the initially described Teff reactivation, other mechanisms are also relevant for unfolding the therapeutic effect of immune checkpoint inhibitors.

Ethics Approval All animal experiments were approved by Regierung von Oberbayern, approval number 55.2-1-54.

781 **Validation of the Combinatorial Effect of Blinatumomab and Nivolumab in Cancer Therapy**

Tienan Wang*, Qing Lin, Jie Zhang, WXi ApTec, Shanghai, China

Background Cancer immunotherapies, including immune checkpoint inhibitors, CAR-T, cancer vaccines and bispecific antibodies, have been brought to spotlight in recent years as several therapeutic strategies targeting the immune system have produced exciting clinical results. Bispecific antibody typically play dual roles in blocking the immune checkpoint and redirecting/re-boosting the function of the immune effector cells. Blinatumomab belongs to CD3 bispecific T cell engager (CD3 BiTE), which was engineered to harbor two arms binding with CD3 and CD19 simultaneously and direct CD8+ T cells to specifically recognize CD19 positive lymphoma cells to execute cytotoxicity. Approval of Blinatumomab for patients with relapse/refractory B cell acute lymphoblastic leukemia (ALL) has driven remarkable increase in combination studies of Blinatumomab with other immunotherapies such as checkpoint inhibitors.

Methods In this study, we developed CD8+ T cytotoxic system targeting different B lymphoma cell line and fully validated the function of Blinatumomab in promoting target tumor cell lysis by primary CD8+ T cells (figure 1). In addition, we established a mixed lymphocyte and tumor system to