However, the mechanisms contributing to the therapeutic success have not been entirely uncovered by now. Here we focus on the impact of PD-1/CTLA-4-blocking antibodies on regulatory T cells (Tregs), which are known to be involved in tumor immune evasion in many cancer types.

Methods To evaluate how Tregs are affected by anti-PD-1/CTLA-4 therapy, we used a MYC-transgenic mouse model of spontaneously arising B-cell lymphoma, which can be effectively treated by immune checkpoint inhibition. Data were acquired by flow cytometry.

Results As earlier shown, Tregs were involved in immune escape of MYC tumors. The Treg to effector T cell (Teff) ratio was elevated within the CD4-positive cell compartment. Tumor-infiltrating Tregs were predominantly thymic Tregs, which recognized overexpressed tumor-derived self-peptides in an MHC class II-restricted manner and showed upregulated expression of activation markers, Foxp3, CD25 and IL-10. To examine whether these phenotypic alterations correlated with the immunosuppressive capability of Tregs, an in vitro suppression assay was established. In this setting, MYC Tregs turned out to suppress proliferation and IFN-γ release of Teff cells more effectively than wildtype Tregs. The suppression observed in vitro was mediated by cell contacts and IL-10. Further suppressive mechanisms are likely to play a role, such as competition for MHC-II ligands and a consumption of IL-2. To investigate if immune checkpoint blockade interferes with these Treg-dependent immunosuppressive pathways, MYC mice were treated with a combination of anti-PD-1 and anti-CTLA-4 antibodies. Tregs from treated MYC mice showed decreased expression of CD69, CD137, Foxp3, CD25 and IL-10 as compared to Tregs from untreated MYC mice. This correlated with a lower suppressive capacity of Tregs from treated animals in the in vitro suppression assay.

Conclusions Taken together, the data show that immune checkpoint blockade impairs the development of the suppressive phenotype of intratumoral Tregs. Thus, apart from the initially described Teff reactivation, other mechanisms are also relevant for unfolding the therapeutic effect of immune checkpoint inhibitors.

Ethics Approval All animal experiments were approved by Regierung von Oberbayern, approval number 55.2-1-54.

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0779

Quantitative Cell-Based Bioassays to Advance Immunotherapy Programs Targeting Immune Checkpoint Receptors

Jamison Grailer, Julia Gilden, Pete Stecha, Denise Garvin, Jun Wang, Michael Beck, Jim Hartnett, Gopal Krishnan*, Frank Fan, Mei Cong, Zhi-Jie Cheng, Promega, Madison, WI, USA

Background The human immune system is comprised of a complex network of immune checkpoint receptors that are promising new immunotherapy targets for the treatment of a variety of cancers and autoimmune disorders. The Nobel prize for Medicine in 2018 was awarded for seminal studies on the role of immune checkpoint targets in T cell activation and furthermore, combining different strategies to release the brakes on the immune system with the aim of eliminating tumor cells even more efficiently. Immunotherapies designed to block co-inhibitory receptors (e.g. PD-1, CTLA-4, TIGIT) are showing unprecedented efficacy in the treatment of cancer. However, not all patients and tumor types respond to this approach. This has resulted in broadening of immunotherapy research programs to target additional co-inhibitory (e.g. LAG-3, TIM-3) and co-stimulatory (e.g. 4-1BB, GITR, OX40, ICOS) receptors individually and in combination.

A major challenge in the development of antibody-based biologics is access to quantitative and reproducible functional bioassays. Existing methods rely on primary cells and measurement of complex functional endpoints. These assays are cumbersome, highly variable and fail to yield data required for drug development in a quality-controlled environment.

Methods To address the need of access to a robust and reliable assay for immunotherapy drug development programs, we have developed a suite of cell-based functional bioassays to interrogate modulation of immune checkpoint receptors individually (e.g. PD-1, CTLA-4, LAG-3, TIM-3, GITR, 4-1BB, OX40, CD40) and in combination (e.g. PD-1 + CTLA-4, PD-1+4-1BB). These assays consist of stable cell lines that express luciferase reporters driven by response elements under the precise control of mechanistically relevant intracellular signals. Thus, the bioassays reflect mechanisms of action for the drug candidates designed for each immune checkpoint receptor and demonstrate high specificity, sensitivity and reproducibility. Here we describe the application of MoAb-based immune checkpoint receptor bioassays as tools for biologics drug discovery, development, potency and stability studies.

Results We demonstrate that these bioassays measure response and inhibition with blocking drugs or potency changes from stressed samples.

Conclusions In summary, these reporter-based bioassays provide valuable tools for the development, stability testing, and potency determination in the manufacture of biologics that are targeted to immune checkpoint.

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0780

Validation of the Combinatorial Effect of Blinatumomab and Nivolumab in Cancer Therapy

Tienan Wang*, Qing Lin, Jie Zhang. WXi ApTec, Shanghai, China

Background Cancer immunotherapies, including immune checkpoint inhibitors, CAR-T, cancer vaccines and bispecific antibodies, have been brought to spotlight in recent years as several therapeutic strategies targeting the immune system have produced exciting clinical results. Bispecific antibody typically play dual roles in blocking the immune checkpoint and redirecting/re-boosting the function of the immune effector cells. Blinatumomab belongs to CD3 bispecific T cell engager (CD3 BiTE), which was engineered to harbor two arms binding with CD3 and CD19 simultaneously and direct CD8+ T cells to specifically recognize CD19 positive lymphoma cells to execute cytotoxicity. Approval of Blinatumomab for patients with relapse/refractory B cell acute lymphoblastic leukemia (ALL) has driven remarkable increase in combination studies of Blinatumomab with other immunotherapies such as checkpoint inhibitors.

Methods In this study, we developed CD8+ T cytotoxic system targeting different B lymphoma cell line and fully validated the function of Blinatumomab in promoting target tumor cell lysis by primary CD8+ T cells (figure 1). In addition, we established a mixed lymphocyte and tumor system to