therapies) were enrolled. There was no limit on the number of prior lines of therapy. At least one accessible lesion was electroprolated with plasmid IL-12 (pIL-12-EP) on days 1, 5 and 8 every 6 weeks and pembrolizumab was administered every 3 weeks. Tumor response in treated and untreated lesions was assessed by RECIST v1.1 every 12 weeks. Endpoints include ORR, safety, PFS, OS, and DOR.

Results

The first 56 patients treated of 100 planned were included in this interim analysis. Of these, 84% had Stage IV disease, 30% had M1c or M1d disease, and 27% had prior exposure to ipilimumab. In 54 efficacy evaluable patients the investigator-assessed ORR was 30% (3 CR/13 PR), 5 patients had 100% reduction of target lesions. All responses have been confirmed, only two responding patient progressed while on study, 2 patients completed the study with ongoing responses confirmed, only two responding patient progressed while on study, 2 patients completed the study with ongoing responses.

The median overall survival (mOS) and duration of response (mDOR) has not been reached, with a median follow-up time of 13 months. Grade 3 treatment-related adverse events (TRAEs) were seen in 5.4% of patients, and there were no grade 4/5 TRAEs. The rate of grade 3 treatment-emergent (TEAEs) regardless of cause was 23.2%. The median time for pIL-12-EP treatment was 10 minutes (range 2,46). Consistent with prior studies of single-agent pIL-12-EP, tumor IHC, and transcriptomic assessments revealed hallmarks of antigen-specific antitumor immunity in this study. Additional analyses including microbiome, TCR clonality, and peripheral blood biomarker assays will be presented.

Conclusions

In this rigorously defined PD-1 antibody refractory patient population, the addition of pIL-12-EP to PD-1 antibody therapy induced deep, durable, systemic response in local treated and distant visceral metastatic untreated lesions with nominal systemic toxicity.

Trial Registration

Trial Registration: NCT#03132675

Ethics Approval

The study was approved by a central IRB and/or local institutional IRBs/Ethics Committees as required for each participating institution.

Consent

Written informed consent was obtained from the patients participating within the trial, the current abstract does not contain sensitive or identifiable information requiring an additional consent from patients.

REFERENCES

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0799
PRIME™ IL-15 (RPTR-147): PRELIMINARY CLINICAL RESULTS AND BIOMARKER ANALYSIS FROM A FIRST-IN-HUMAN PHASE 1 STUDY OF IL-15 LOADED PERIPHERALLY-DERIVED AUTOLOGOUS T CELL THERAPY IN SOLID TUMOR PATIENTS

Erika Hamilton, a Sarah Nikolofor, a Philip Bardwell*, a Christine McInnis, a Jeffrey Zhang, a 1Erika Hamilton, a Sarah Nikolofor, a Philip Bardwell*, a Christine McInnis, a Jeffrey Zhang, a George Blumenschein, c Keren Osman, a Anthony Shields, b

1Erika Hamilton, a Sarah Nikolofor, a Philip Bardwell*, a Christine McInnis, a Jeffrey Zhang, a George Blumenschein, c Keren Osman, a Anthony Shields, b

Background RPTTR-147 is a novel autologous non-genetically modified multi-clonal T cell product loaded with an IL-15-Fc nanogel. The product was derived from rare peripherally-derived anti-tumor T cell clones that were primed against a multi-antigen cassette containing tumor associated antigens (TAA), known to be over-expressed in specific tumor types.

We describe preliminary results from the ongoing first-in-human Phase 1 trial.

Methods Autologous anti-TAA T cells are generated with a proprietary dendritic cell priming process and then loaded with an IL-15-Fc nanogel. TAs used in cassette: PRAME, NY-ESO-1, SSX2, Survivin and WT1. Thawed RPTTR-147 is delivered by infusion. Pre- and post-treatment biopsies were collected for biomarker analysis by immunohistochemistry (IHC) and transcriptome sequencing. Serial blood collections were obtained for measuring IL-15 pharmacokinetics and pharmacodynamic parameters including plasma cytokine levels and immunophenotyping by flow cytometry. T cell receptor sequencing (TCRSeq) was used to characterize the T cell repertoire from manufactured T cell product and the patient’s blood.

Results Interim clinical and biomarker data from 17 patients with advanced metastatic disease refractory to SOC who received monthly infusions of 20-360 million cells/m², were reviewed (table 1). There were no dose-limiting toxicities and no evidence of cytokine-release syndrome. The 360M/m² dose contained 3X more IL15-Fc than the MTD of systemically administered IL15-Fc, but produced less than a tenth of the systemic exposure to free IL15-Fc. Currently, 360M/m² is considered safe and well-tolerated. Further dose escalation is planned.

Matched evaluable biopsies were obtained in 7 patients. Tumor-infiltrating T cell lymphocytes was observed in 5 cases for CD8 T cells and 4 cases for CD4 T cells. A dose dependent CD8 and CD4 T cells was observed, consistent with expected MOA and PK. TCRSeq analysis demonstrated that product specific T cell clones could be tracked in both patient’s blood and tumor over time. Further analysis to decode the specificity of those cells and demonstrate that tumor antigen specific T cells can be found in patient’s blood and tumor biopsies is ongoing.

Of the 17 patients who received RPTTR-147 infusions 10 were noted to have stable disease (SD) and in 4 patients SD lasted > 6 months.

Conclusions Interim results with RPTTR-147 have shown it to be well-tolerated and have a favorable safety profile. Dose-escalation is proceeding. Ongoing biomarker analysis will inform future clinical strategies in matching patients to an optimized PRIME IL-15 T cell product.

Trial Registration NCT03815682

Ethics Approval The study was approved by local institutional IRBs after acceptance of the IND by the FDA.