8 intratumoral injections of CV8102 are being administered initially over a 12 week period, while patients benefiting from the single agent therapy may receive further treatment. In an initial dose escalation part the maximum tolerated dose and recommended phase 2 dose for subsequent cohort expansion will be defined.

Results As of September 16, 2020, 29 patients have been treated with CV8102 as a single agent (25-900 µg) and 21 patients have received CV8102 (25-900 µg) in combination with anti-PD-1 antibodies. Most frequent treatment related adverse events were mild to moderate fever, fatigue, chills and headache. One patient treated at the 900 µg single agent experienced a dose limiting toxicity (G3 transaminase increase in the context of G2 cytokine release syndrome).

Regression of injected and distant noninjected lesions was observed in several patients in the single agent and the anti-PD-1 combination cohorts. Updated safety and efficacy results will be presented.

Conclusions CV8102 showed an acceptable tolerability and preliminary evidence of clinical efficacy as single agent and in combination with anti-PD-1 antibodies.

Trial Registration NCT03291002

Ethics Approval The study was approved by the Central Ethics Committees in Tuebingen, Germany under 785/2016AMG1, in Ethics Approval

Conclusions

will be presented.

REFERENCES

http://dx.doi.org/10.1136/ijt-2020-SITC2020.0800

PRIME™ IL-15 (RPTR-147): PRELIMINARY CLINICAL RESULTS AND BIOMARKER ANALYSIS FROM A FIRST-IN-HUMAN PHASE 1 STUDY OF IL-15 LOADED PERIPHERALLY-DERIVED AUTOLOGOUS T CELL THERAPY IN SOLID TUMOR PATIENTS

Background RPTR-147 is a novel autologous non-genetically modified multi-clonal T cell product loaded with an IL15-Fc nanogel. The product was derived from rare peripherally-derived anti-tumor T cell clones that were primed against a multi-antigen cassette containing tumor associated antigens (TAA), known to be over-expressed in specific tumor types. We describe preliminary results from the ongoing first-in-human Phase 1 trial.

Methods Autologous anti-TAA T cells are generated with a proprietary dendritic cell priming process and then loaded with an IL15-Fc nanogel. TAAs used in cassette: PRAME, NY-ESO-1, SSX2, Survivin and WT1. Thawed RPTR-147 is delivered by infusion. Pre- and post-treatment biopsies were collected for biomarker analysis by immunohistochemistry (IHC) and transcriptome sequencing. Serial blood collections were obtained for measuring IL-15 pharmacokinetics and pharmacodynamic parameters including plasma cytokine levels and immunophenotyping by flow cytometry. T cell receptor sequencing (TCRSeq) was used to characterize the T cell repertoire from manufactured T cell product and the patient's blood.

Results Interim clinical and biomarker data from 17 patients with advanced metastatic disease refractory to SOC who received monthly infusions of 20-360 million cells/m², were reviewed (table 1). There were no dose-limiting toxicities and no evidence of cytokine-release syndrome. The 360M/m² dose contained 3X more IL15-Fc than the MTD of systemically administered IL15-Fc, but produced less than a tenth of the systemic exposure to free IL15-Fc. Currently, 360M cells/m² is considered safe and well-tolerated. Further dose escalation is planned.

Matched evaluable biopsies were obtained in 7 patients. Tumor-infiltrating T cell lymphocytes was observed in 5 cases for CD8 T cells and 4 cases for CD4 T cells. A dose dependent increase in both inflammatory cytokines and NK & CD8+ T cells was observed, consistent with expected MOA and PK. TCRSeq analysis demonstrated that product specific T cell clones could be tracked in both patient's blood and tumor over time. Further analysis to decode the specificity of those cells and demonstrate that tumor antigen specific T cells can be found in patient's blood and tumor biopsies is ongoing.

Of the 17 patients who received RPTR-147 infusions 10 were noted to have stable disease (SD) and in 4 patients SD lasted > 6 months.

Conclusions Interim results with RPTR-147 have shown it to be well-tolerated and have a favorable safety profile. Dose-escalation is proceeding. Ongoing biomarker analysis will inform future clinical strategies in matching patients to an optimized PRIME IL-15 T cell product.

Trial Registration NCT03815682

Ethics Approval The study was approved by local institutional IRBs after acceptance of the IND by the FDA.

Abstract 801 Table 1 Summary of Patients

<table>
<thead>
<tr>
<th>Tumor Type</th>
<th>Number of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melanoma</td>
<td>6</td>
</tr>
<tr>
<td>Non-Small Cell Lung Carcinoma</td>
<td>4</td>
</tr>
<tr>
<td>Renal Cell Carcinoma</td>
<td>2</td>
</tr>
<tr>
<td>Head & Neck</td>
<td>2</td>
</tr>
<tr>
<td>Appendiceal Carcinoma</td>
<td>1</td>
</tr>
<tr>
<td>Ovarian Carcinoma</td>
<td>1</td>
</tr>
<tr>
<td>Synovial Carcinoma</td>
<td>1</td>
</tr>
</tbody>
</table>

Tumor types for the 17 patients with advanced metastatic disease included in this clinical trial (NCT03815688)
RAMUCIRUMAB PLUS ATEZOLIZUMAB IN PATIENTS WITH STAGE IV NON- Small CELL LUNG CANCER PREVIOUSLY TREATED WITH IMMUNE CHECKPOINT BLOCKADE

Brett Herzog, Saiama Waqar, Siddhartha Devarakonda, Jeffrey Ward, Ramaswamy Govindan, Daniel Morgensztern. Washington University in St. Louis, Saint Louis, MO, USA

Background T-cell trafficking to the tumor is inhibited via vascular endothelial growth factor (VEGF)-mediated downregulation of important adhesion molecules on tumor-associated blood vessels and progression of disease on immune checkpoint blockers (ICBs) has been associated with decreased tumor-infiltrating immune cells.1 2 We hypothesized that inhibiting VEGF signaling through its receptor, VEGFR2, would increase intratumoral T cells. Therefore we sought to evaluate the combination of ramucirumab, an anti-VEGF receptor 2 monoclonal antibody, and atezolizumab in patients with advanced-stage, non-small cell lung cancer (NSCLC) patients who have previously progressed on at least one line of ICB. Here, we report on the first twelve patients enrolled on trial.

Methods Advanced stage NSCLC patients with an ECOG performance status of ≤1 who had previously been treated with ICBs were eligible with no limitation on prior lines of ICB therapy. Patients with untreated brain metastasis, recent hemoptysis, gastrointestinal bleeding or perforation or fistula were excluded. The study was conducted with a two-stage MiniMax design. Peripheral blood and repeated biopsy, when feasible, were collected for correlative analysis.

Results Twelve patients were enrolled in the first stage of the trial. The median age was 68 (range 47-78), 10 of the patients are female, and 10 had non-squamous histology. Patients had an average of 3.5 prior lines of therapy and 1.6 lines of prior immunotherapy. Overall, treatment was well-tolerated with no grade 3 or 4 adverse events. The most common adverse events were grade 1 or 2 hypertension (35%), nausea (25%) and vomiting (25%). There were no objective responses and 11 patients (91%) achieved stable disease. The median progression-free survival is 3 months with 3 patients (25%) on trial for more than 12 months. The median overall survival (OS) at the time of the latest data cutoff on 9/15/20 is 11.5 months.

Conclusions The preliminary data from our study showed that combination of ramucirumab and atezolizumab is well-tolerated and associated with prolonged overall survival in a subset of heavily pretreated patients who progressed on prior ICB. The trial is still accruing patients and exploratory analyses are planned.

Ethics Approval The study was approved by the Washington University Institutional Review Board.

REFERENCES

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0801