due to a PRELP-mediated transcriptional upregulation of components of the MHC class I APM components TAP1, TAP2 and TAPBP as determined by qPCR and promoter assay in PRELP transfectants versus mock controls. Furthermore, MHC class I surface expression was even more pronounced upon BGN co-transfection with PRELP. PRELP overexpression was able to inhibit the proliferation of the B16F10 cells. Bioinformatics analyses demonstrated a positive correlation of PRELP with HLA-A, -B and -C alleles in human melanoma.

Conclusions Our findings demonstrated that overexpression of PRELP correlates with higher MHC class I expression and inhibits cell proliferation. For the first time, co-transfections of the two proteoglycans PRELP and BGN had a synergistic effect on upregulating MHC class I expression. Therefore, PRELP can serve as a novel therapeutic strategy that deserves further investigation.

Acknowledgements The project is supported by Wilhelm-Sander-Stiftung (No: 2019.076.1) and by a Roux grant (FKZ: PK37) of the Medical Faculty of the Martin-Luther-University Halle-Wittenberg.

REFERENCES

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0868

ANTI-LUNX TARGETING THERAPY FOR LUNG CANCER
Xiachu Zheng*, Weihua Xiao, Zhigang Tian. USTC

Background The identification of novel therapeutic targets in lung cancer for the generation of targeted drugs is an urgent challenge. Lung-specific X (LunX) is a member of the palate, lung, and nasal epithelium clone (PLUNC) protein family. Some reports have suggested that the human PLUNC gene (also named LUNX) might be a potential marker for NSCLC, and PLUNC mRNA has been identified in peripheral blood and mediastinal lymph nodes from NSCLC patients. It is unclear whether LunX expression is associated with the pathological type and pathological severity in lung cancer patients. The utility of LunX as a potential therapeutic target in NSCLC is uncertain.

Methods Clinically, 80% of lung cancers are non-small-cell lung cancers (NSCLCs). Here, we analyzed 158 NSCLC samples and detected LunX expression.

Results It showed that the expression of LunX were elevated in 90% (108/150) lung cancers by IHC staining, which accompanied with significantly lower rate of postsurgery survival. Further evaluation of LunX expression in invasive tumor cells in subclavicular lymph nodes, draining lymph nodes, hydrothorax of lung cancer patients, turned out that LunX is highly expressed in invasive lung cancer cells. These data indicated that LunX overexpresses in lung cancer and associates with tumorigenesis and tumor progression.

Mechanistically, we discovered that LunX bound to 14-3-3 protein and facilitated their activation by maintaining these proteins in a dephosphorylated state, thereby contributing to the activation of pathways downstream of 14-3-3 protein, such as the Erk1/2 and JNK pathways. Thus, LunX promoted tumor growth and metastasis. Furthermore, we generated a therapeutic antibody specific for lung cancer, which not only inhibited lung cancer growth and reduced Ki67 staining and angiogenesis in xenograft model of subcutaneously transplanted tumor, but also blocked tumor metastasis and invasion, improved the survival of these mice. We also detected that antibody treatment induces LunX antigen-antibody complex endocytosis and the degradation of LunX protein.

Conclusions Our study suggests that LunX is a novel therapeutic target in lung cancer and that the LunX-targeted therapeutic antibody may have considerable clinical benefit.

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0869

870 INVESTIGATING SEXUAL DIMORPHISM IN THE TUMOR IMMUNE MICROENVIRONMENT OF NON-MUSCLE INVASIVE BLADDER CANCER

Background While the incidence of non-muscle invasive bladder cancer (NMIBC) is four times higher in men than women, female patients display earlier recurrence than their male counterparts following treatment with Bacillus Calmette-Guerin (BCG) immunotherapy. While patient sex (biological differences) and gender (social/behavioral differences) have long been associated with NMIBC incidence and clinical outcome, these factors remain the most understudied phenotypes in biomarker and treatment design. We hypothesized that sexual dimorphism in the pre-existing tumor immune microenvironment (TIME) may contribute to the poor clinical outcomes observed in female NMIBC patients.

Methods To test this hypothesis, we interrogated the expression patterns of genes associated with specific immune cell populations and immune checkpoint pathways using tumor transcriptome profiles from n=460 NMIBC patients (357 males and 103 females). Based on this interrogation, we utilized multiplex immunofluorescence to selectively evaluate the density and spatial distribution of CD79a+ (B), CD163+ (M2-like tumor associated macrophages), and PD-L1+ (programmed death ligand 1) cells in an independent cohort of 510 NMIBC tumors collected from n=390 patients (305 males and 85 females).

Results We observed significantly higher expression of immune checkpoints genes CTLA4, PDCD1, TIGIT, LG3 and ICOS in tumors from female patients. Importantly, transcript levels of the B cell recruiting chemokine CXCL13 and the B cell surface molecule CD40 were significantly increased in tumors from female patients. Multiplex immunofluorescence revealed that CD163+ cells were significantly higher in epithelial and stromal compartments of high-grade tumors (p = 0.0011, p = 0.00034, respectively) from female patients compared to males. While no sex-associated differences were observed in the density of CD79a+ B cells, this population was found to be significantly increased in the epithelial and stromal compartments (p = 6.9e-9, 9.4e-10, respectively) of high-grade tumors compared to low-grade tumors. PD-L1 expression was significantly higher in the epithelial compartment of high-grade tumors from female
IN VITRO IMMUNOREGULATORY EFFECT FROM NEOADJUVANT CHEMORADIOTHERAPY ENHANCES MACROPHAGE POLARIZATION IN CERVICAL CANCER DERIVED MESENCHYMAL STROMAL CELLS OVER MOLECULES EXPRESSION IN MONOCYTE DERIVED MACROPHAGE POLARIZATION

Victor Cortés-Morales, Juan Montesinos, Luis Chávez-Sánchez, Sandra Espíndola-Garibay, Alberto Monroy-García, Teresa Apresa-García, Héctor Mayani. Universidad Nacional Autónoma de México, Mexico City, Mexico; Instituto Mexicano del Seguro Social Ciudad de México, Mexico

Background Macrophages are immunological cells that sense microenvironmental signals that may result in the polarized expression of either proinflammatory (M1) or anti-inflammatory (M2) phenotype. Macrophages M2 are present in tumoral microenvironment and their presence in patients with cervical cancer (CeCa) is related with loss of survival. Mesenchymal Stromal Cells (MSCs) are also present in tumor microenvironment of cervical cancer (CeCa-MSC), which have shown immunoregulatory effects over CD8 T cells, decreasing their cytotoxic effect against tumoral cells. Interestingly, MSCs from bone marrow (BM-MSC) decrease M1 and increase M2 macrophage polarization in an in vitro coculture system. Macrophages and MSCs are present in microenvironment of cervical cancer, however it is unknown if MSCs play a role in macrophage polarization. In the present study, we have evaluated the immunoregulatory capacity of CeCa-MSCs to induce macrophage polarization.

Methods CD14 monocytes were isolated from peripheral blood and cultured in the absence or presence of MSCs from BM, normal cervix (NCx) and CeCa. Two culture conditions were included, in the presence of induction medium to favors M1 (GM-CSF, IL-4 and IL-13) macrophage polarization. M1 (HLA-DR, CD80, CD86 and IFNγ) or M2 (M-CSF, IL-4 and IL-10) macrophage molecular markers were evaluated by flow cytometry. Finally, we evaluated concentration of IL-10 and TNFa in conditioned medium form all coculture conditions.

Results We observed that CeCa-MSCs and BM-MSCs in presence of M1 induction medium, decreased M1 macrophage markers (HLA-II, CD80, CD86 and IFNγ), and increase the expression of CD14 (M2 macrophage marker). Interestingly, in presence of M2 induction medium, BM-MSCs and CeCa-MSCs but not NCx-MSC increased CD163, CD206, IDO and IL-10 (M2 macrophage markers). We observed a decreased concentration of TNFa in the supernatant medium from all cocultures with MSCs, but only in presence of CeCa-MSCs, increased IL-10 concentration was detected in such cocultures.

Conclusions In contrast to NCx-MSCs, CeCa-MSCs similarly to BM-MSCs have in vitro capacity to decrease M1 and increase M2 macrophage phenotype.

Acknowledgements The authors are indebted to gratefully acknowledge to CONACYT (Grant No. 272793) and IMSS (Grant no. 1731) for support to Juan J. Montesinos research.

References

871

NEOADJUVANT CHEMORADIOThERAPY ENHANCES T CELL INFILTRATION IN PancreATIC Ductal ADENOCARCINOMA BUT HIGH PERCENTAGE OF REGULATORY T CELLS ASSOCIATES WITH POOR SURVIVAL

Benjamin Fullerenton, Robyn Gartrell, Thomas Enzler, Pan Kim, Ladan Fadollahi, Andrew Chen, Subha Permi, Stuart Weissberg, Emanuelle Rick, Eun Jeong Oh, Xinheing Guo, Codruta Chiuzan, Raul Rabadán, Donna Farber, Helen Remotti, David Horowitz, Vonne Saenger, Columbia University Irving Medical Center, New York, NY, USA; Columbia University Irving Medical Center, Edgewater, NJ, USA; University of Michigan Medicine, Ann Arbor, MI, USA; University of Pittsburgh Medical Center, Pittsburgh, USA; Columbia University Irving Medical Center/New York Presbyterian, New York, NY, USA; Vagelos College of Physicians and Surgeons, New York, NY, USA; Massachusetts General Hospital and Brigham and Women’s Hospital/Dana-Farber Cancer Institute, Boston, USA; Columbia University, Mailman School of Public Health, New York, NY, USA

Background Currently, diagnosis with pancreatic ductal adenocarcinoma (PDAC) renders an almost intrinsically poor patient prognosis. Despite complete surgical resection and intense neoadjuvant and/or adjuvant treatment the great majority of patients will ultimately relapse and die from the disease. Further, PDAC has been characterized as highly immune resistant. It is speculated that radiation, chemotherapy, or chemoradiation cause the release of tumor antigens and inflammatory cytokines eventually leading to increased immunogenicity of PDAC.

Methods We used computational quantitative multiplex immune fluorescence (qmIF) (n = 31) and the NanoString assay (n = 34) to quantitatively analyze the effect of neoadjuvant