Background Macrophages are immunological cells that sense microenvironmental signals that may result in the polarized expression of either proinflammatory (M1) or anti-inflammatory (M2) phenotype. 1 Macrophages M2 are present in tumoral microenvironment and their presence in patients with cervical cancer (CeCa) is related with less survival. 2 Mesenchymal Stromal Cells (MSCs) are also present in tumor microenvironment of cervical cancer (CeCa-MSC), which have shown immunoregulatory effects over CD8 T cells, decreasing their cytotoxic effect against tumoral cells. 3 Interestingly, MSCs from bone marrow (BM-MSC) decrease M1 and increase M2 macrophage polarization in an in vitro coculture system. 4 Macrophages and MSCs are present in microenvironment of cervical cancer, however it is unknown if MSCs play a role in macrophage polarization. In the present study, we have evaluated the immunoregulatory capacity of CeCa-MSCs to induce macrophage polarization.

Methods CD14 monocytes were isolated from peripheral blood and cultivated in the absence or presence of MSCs from BM, normal cervix (NCx) and CeCa. Two culture conditions were included, in the presence of induction medium with GM-CSF, LPS and IFNg or M-CSF, IL-4 and IL-13, macrophage polarization. M1 (HLA-II, CD80, CD86 and IFNg), and increase the expression of CD14 (M2 macrophage marker). Interestingly, in presence of M2 induction medium, BM-MSCs and CaCeMSCs but not CxN-MSC increased CD163, CD206, IDO and IL-10 (M2 macrophage markers). We observed a decreased concentration of TNFa in the supernatant medium from all cocultures with MSCs, but only in presence of CeCa-MSCs, increased IL-10 concentration was detected in such cocultures.

Conclusions In contrast to NCx-MSCs, CeCa-MSCs similarly to BM-MSCs have in vitro capacity to decrease M1 and increase M2 macrophage phenotype.

Acknowledgements The authors are indebted to gratefully acknowledge to CONACYT (Grant No. 272793) and IMSS (Grant no. 1731) for support to Juan J. Montesinos research.

REFERENCES

IN VITRO IMMUNOREGULATORY EFFECT FROM CERVICAL CANCER DERIVED MESENCHYMAL STROMAL CELLS OVER MOLECULES EXPRESSION IN MONOCYTE DERIVED MACROPHAGE POLARIZATION

871

Víctor Cortés-Morales*, 2Juan Montesinos, 2Luis Chávez-Sánchez, 2Sandra Espíndola-Garibay, 2Alberto Monroy-García, 2Teresa Apresa-García, 2Héctor Mayani. Universidad Nacional Autónoma de México, Mexico City, Mexico; 2Instituto Mexicano del Seguro Social, Ciudad de México, Mexico

872 NEOADJUVANT CHEMORADIOThERAPY ENHANCES T CELL INFILTRATION IN PANCREATIC DUCTAL ADENOCARCINOMA BUT HIGH PERCENTAGE OF REGULATORY T CELLS ASSOCIATES WITH POOR SURVIVAL

872

Benjamin Fullerton*, 2Robyn Gartrell, 3Thomas Endler, 3Pan Kim, 3Ladan Fazlollahi, 4Andrew Chen, 5Subha Perni, 5Stuart Weisberg, 5Emanuela Rizzi, 5Eun Jeong Oh, 5Xinheing Guo, 5Rodrigo Chuan, 5Raul Rabadán, 5Donna Farber, 5Helen Remotti, 5David Horowitz, 5Yonne Saenger. 1Columbia University Medical Center, New York, NY, USA; 2Columbia University Irving Medical Center, Edgewater, NJ, USA; 3University of Michigan Medicine, Ann Arbor, MI, USA; 4University of Pittsburgh Medical Center, Pittsburgh, PA; 5Columbia University Irving Medical Center/NewYork Presbyterian, New York, NY, USA; 6Vagelos College of Physicians and Surgeons, New York, NY, USA; 7Massachusetts General Hospital and Brigham and Women’s Hospital/Dana-Farber Cancer Institute, Boston, USA; 8Columbia University, Mailman School of Public Health, New York, USA

Background Currently, diagnosis with pancreatic ductal adenocarcinoma (PDAC) renders an almost intrinsically poor patient prognosis. Despite complete surgical resection and intense neoadjuvant and/or adjuvant treatment the great majority of patients will ultimately relapse and die from the disease. Further, PDAC has been characterized as highly immune resistant. It is speculated that radiation, chemotherapy, or chemoradiation cause the release of tumor antigens and inflammatory cytokines eventually leading to increased immunogenicity of PDAC.

Methods We used computational quantitative multiplex immune fluorescence (qmIF) (n=31) and the NanoString assay (n=34) to quantitatively analyze the effect of neoadjuvant markers (HLA-II, CD80, CD86 and IFNg), and increase the expression of CD14 (M2 macrophage marker). Interestingly, in presence of M2 induction medium, BM-MSCs and CaCeMSCs but not CxN-MSC increased CD163, CD206, IDO and IL-10 (M2 macrophage markers). We observed a decreased concentration of TNFa in the supernatant medium from all cocultures with MSCs, but only in presence of CeCa-MSCs, increased IL-10 concentration was detected in such cocultures.

Conclusions In contrast to NCx-MSCs, CeCa-MSCs similarly to BM-MSCs have in vitro capacity to decrease M1 and increase M2 macrophage phenotype.

Acknowledgements The authors are indebted to gratefully acknowledge to CONACYT (Grant No. 272793) and IMSS (Grant no. 1731) for support to Juan J. Montesinos research.

REFERENCES