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Figure 7  Dual TLR2 agonist and GM-CSF treatment promoted antigen-specific T cell proliferation and enhanced antigen-
specific CTL responses. TC-1 tumor-bearing mice were s.c. immunization on day 14, and tumors were collected 8 days after 
immunization. (A,B) Measurements of infiltrating T lymphocytes by flow cytometry analysis in TdLNs (A) and tumors (B) were 
performed. (C) Single-cell suspensions from tumors were stimulated with RAH peptides, PMA and ionomycin in the presence 
of brefeldin A for 4–6 hours. IFN-γ, perforin, granzyme B and Ki67 expression in CD8+ T cells were determined by intracellular 
cytokine staining followed by flow cytometry analysis. (D,E) Vaccine-induced in vivo CTL killing assay. (D) Representative flow 
cytometry analysis of CFSE-labeled RAH+ target cells killed in the lymph nodes at 18 hours after adoptive transfer. (E) The 
percentage of target cells killed was determined. n=11–12 mice per group from two independent experiments in (A,B). *P<0.05, 
**p<0.01 and ***p<0.001 (one-way ANOVA with Tukey’s correction). ANOVA, analysis of variance; CFSE, carboxyfluorescein 
succinimidyl ester; CTL, cytotoxic T lymphocyte; GM-CSF, granulocyte/macrophage colony stimulating factor; RAH, 
RAHYNIVTF; TdLN, tumor-draining lymph nodes; TLR2, Toll-like receptor 2.
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It has been postulated that tumor progression is associated 
with chronic inflammation through a proinflammatory cyto-
kine network.18 19 However, local administration of recombi-
nant proteins enables acute and transient induction through 
TLR2 ligands, and the GM-CSF response can tune the anti-
tumor response.20 Additionally, rlipoE7m-MoGM induced 
relatively high levels of IL-1β in BMDCs, ultimately potenti-
ating a TH-1-type immune response, which suggests that the 
immunostimulatory benefits of combining TLR2 agonists 
and GM-CSF conferred to BMDCs outweigh the proinflam-
matory cytokine events related to tumorigenesis. The associ-
ations of these cytokines in tumor progression are context 
dependent.

Low numbers or dysfunction of CD8+ T cells in tumors 
counteract the efficacy of vaccine-induced antigen-specific 
T cell responses. In our study, the addition of GM-CSF 
considerably enhanced the TLR2 agonist-induced anti-
tumor response by promoting the infiltration of antigen-
specific cytotoxic T cells in the tumor and the amount of 
perforin and IFN-γ secreted. Importantly, the cooperative 
antitumor effect of TLR2 agonists and GM-CSF induces 
distant tumor regression, suggesting that local immu-
nity can induce systemic regression of metastatic tumors. 
Furthermore, the induction of antitumor effects could 
represent immune memory in tumor-free mice (online 
supplemental figure S2). In addition, GM-CSF improved 
the T cell response, which has been well documented.21 22 
Consistently, a study by Lee and colleagues reported that 
combined local GM-CSF administration and intramus-
cular E7 DNA treatment activated E7-specific CD8+ T 
cells, which accumulated in cervicovaginal TC-1 tumors 
in mice.23 The mode of action of GM-CSF in improving 
antitumor efficacy may be indirectly mediated through 
DC effects on both the priming and effector phases of T 
cell responses. Moreover, GM-CSF plays a role in T cell 
motility by regulating chemokine expression. A previous 
study demonstrated that GM-CSF upregulated CXCR3 
expression on vaccine-induced T cells in humans.24 Addi-
tionally, the release of CXCL9/10, a ligand for CXCR3, 
was increased following TLR2 agonists plus IFN-γ stimu-
lation in vitro.25 Further in vivo studies revealed that the 
combination of a TLR2 agonist and GM-CSF induced 
chemokine expression, which supports this possibility.

Multiple lines of evidence have established that tumor-
infiltrating immune cells determine the prognosis of patients 
with cancer and the efficacy of therapy-induced immune 
responses. Analysis of cellular populations outlines the 
biological effects of a TLR2 agonist and GM-CSF in the TME. 
Of note, activation of tumor DCs, especially CD103+ cDC1s, 
is critically important for initiating the tumor-infiltrating CTL 
responses by cross-presenting acquired tumor antigens.26–28 
Nonetheless, DCs represent a rare tumor population because 
tissue-resident CD103+ DCs fail to accumulate in injured 
tissue.29 In our study, rlipoE7m-MoGM therapy induced a 
broad immune response involving multiple myeloid cell 
types, such as DCs and macrophages. Consistent with reports 
showing that GM-CSF upregulates CCR7 chemokine receptor 
expression on DCs,30 we demonstrated that tumor CD103+ 

DCs from mice administered rlipoE7m-MoGM exhibited 
a high expression level of CCR7, suggesting that this treat-
ment might provide critical tumor-specific T cell priming 
by transporting tumor antigens to the TdLNs.31 However, 
unlike the events seen with Flt3 ligand promoting the differ-
entiation and expansion of CD103+ cDC1s,32 the number of 
CD103+ DCs was not quantitatively changed in the tumors 
following rlipoE7m-MoGM vaccination. A previous study 
showed that the development of DCs was determined by the 
GM-CSF quantity.33 34 Here, the low dose of GM-CSF might 
not be sufficient to promote CD103+ cDC1 development or 
recruit DCs without specific chemokine overexpression in 
tumors. Moreover, without DC activation and maturation 
through TLR signaling, a robust antitumor response may 
not be induced despite high tumor infiltration by DCs.35 
Interestingly, treatment with rlipoE7m-MoGM reduced IL-6/
IL-10-secreted TAMs but not Ly6Chi myeloid cells. Because 
GM-CSF has been considered to shift macrophages into an 
M1-like phenotype,36 Ly6Chi monocytes depend on M-CSF 
signaling for their recruitment and extravasation to tumors.37 
These studies and our data suggest that the maturation status 
of i.t. DCs rather than the number of immature DCs infil-
trating the tumor is a critical factor involved in triggering 
antigen-specific T cell responses.

Our findings highlight the role of macrophages in medi-
ating antitumor efficacy in response to rlipoE7m-MoGM 
therapy. With local rlipoE7m-MoGM administration, a 
decreased frequency of TAMs in tumors was observed. 
This depletion of macrophages inhibited tumor growth 
and might result from the removal of a certain portion of 
protumor macrophages.38 GM-CSF expression reduces the 
responsiveness of macrophages to M-CSF by enhancing the 
cleavage of CSF-1R, preventing macrophage recruitment 
and proliferation.30 39 However, whether the combination of 
the TLR2 agonist and GM-CSF is involved in the function of 
macrophages, which can switch from protumor to antitumor 
phenotypes, needs to be further investigated.

CONCLUSION
The combination of a TLR2 agonist and GM-CSF exhibits 
cooperative effects on DC activation and modulates TAM 
populations in the TME, which subsequently promote 
antigen-specific T cell infiltration in the tumor. On the 
basis of the encouraging efficacy and specificity shown, 
our study suggests that the combination of TLR2 agonists 
and GM-CSF is an excellent combinatorial adjuvant for 
triggering antitumor immunity and provides preclinical 
evidence of established tumor regression.
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