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of the above immune cells in the tumors, while total 
TMB appears to not be as strongly associated with TIL 
densities. These findings were not completely consistent 
with those from the TCGA-COADREAD cohort. There 
are important caveats to using TCGA data due to the 
characteristics of bulky sequencing data that may not 
delicately quantify the amounts of TILs compared with 
the IHC staining-based methods. We believe our sophis-
ticated approaches overcame the potential limitations 
of tumor cell and immune cell evaluation in the TCGA-
COADREAD cohort. Considering that TMB is widely 
accepted as a marker of an ICI treatment response,31 32 
our results suggest that an indel mutation load may be a 

useful biomarker for precise patient stratification of the 
ICI treatment response in patients with MSI-high tumors.

POLE mutations are infrequently encountered in clin-
ical sequencing studies of solid malignant tumors, but they 
have attracted the attention of clinicians because POLE 
inactivating mutations are believed to be associated with 
a very high TMB, an increased tumor immune response 
and a better response to ICIs.33 Nevertheless, it has been 
also widely recognized that not all POLE gene mutations 
affect the biologic activity of the protein product of the 
POLE gene.34 We also found an ultrahypermutated group 
with ONC/LO POLE mutations in the CRC cases, while 
the unknown-significant and truncated POLE-mutated 

Figure 5  Densities of immune cell infiltrations in MSI-high and POLE-mutant cases in the AMC cohort. (A,B) Photomicrography 
of CD3 immunostaining with POLE M444K (TMB: 215.6/Mb) and MSI-high (TMB: 82.8/Mb) cases. The amount of CD3-positive 
T-cell infiltration is lower in the POLE M444K case even though it is high TMB. (C–G) The amount of immune cells positive 
for CD3 (C), CD4 (D), CD8 (E), FoxP3 (F) and PD-1 (G) are compared according to the MSI and POLE mutation statuses. 
CD4-positive and CD8-positive cell densities were significantly increased in the MSI-high group (p<0.05). CD3-positive cell 
densities were also elevated in the MSI-high group, but this was not statistically significant (p=0.065). (H–L) The number of 
indel mutations were significantly correlated with CD3-positive (C), CD4-positive (D), CD8-positive (E), FoxP3-positive (F) and 
PD-1-positive (G) immune cell infiltration densities in all MSI-high and POLE-mutant cases. (M–Q) In contrast, overall TMB was 
not significantly correlated with the tumorous immune cell infiltration densities. AMC, Asan Medical Center; MSI, microsatellite 
instability; ONC/LO, oncogenic/likely oncogenic; NS, non-significant; TMB, tumor mutation burden.

 on N
ovem

ber 28, 2021 by guest. P
rotected by copyright.

http://jitc.bm
j.com

/
J Im

m
unother C

ancer: first published as 10.1136/jitc-2021-002797 on 4 O
ctober 2021. D

ow
nloaded from

 



9Hwang HS, et al. J Immunother Cancer 2021;9:e002797. doi:10.1136/jitc-2021-002797

Open access

group may not show hypermutation. Interestingly, 
we detected two cases with concurrent MSI-high and 
multiple unknown significance POLE mutations showing 
ultrahypermutation genotype. Recently, Haradhvala 
and colleagues reported that polymerase proofreading 
deficiency precedes the MMR deficiency in concurrent 
polymerase proofreading and MMR deficient cases in 
TCGA endometrial cancer cohort.35 On the contrary, we 
observed that MSH6 and MSH2 mutations preceded the 
multiple POLE mutations in our first concurrent POLE-
mutated and MMR-deficient colon cancer case, while 
we could not determine the two mutation events tempo-
rally in the second case. It should be noted that these 
two tumors showed distinct mutational characteristics 
(ultrahypermutation, high numbers of single nucleotide 
variants and a low indel mutation load), which is more 
like the genotype of POLE-inactivated tumors rather than 
MSI-high tumors. Even though it is virtually impossible 
to conclude whether the two genomic events (POLE or 
MMR gene mutation) occurred simultaneously or were 
temporally separated in our cases, we strongly believe 
that the unknown-significant POLE mutations could be 
a secondary mutation to MMR deficiency that have an 
impact on POLE function, resulting in an increased TMB 
in concurrent POLE-mutated and MMR-deficient tumors.

A number of studies have suggested that the ultrahyper-
mutation caused by POLE inactivation is associated with 
an increased immune reaction against the tumor and a 
better prognosis in endometrial cancer36 37 and CRCs.38 
Also, there are several reports showing clinical responses 
to ICI treatment in POLE-inactivated malignancies.39–41 
The most interesting point in this regard is that tumor 
immune responses of POLE-inactivated tumors appear to 
be heterogeneous or even contradictory. Shia et al reported 
that more than half of POLE-mutated CRCs showed histo-
logic features just like those of conventional CRCs.42 In 
addition, Wang et al demonstrated that not all POLE-
inactivated CRCs displayed high CD8 + T cell infiltration 
and a clinical response to ICI treatment.43 Concordantly, 
we demonstrated that the tumors harboring unknown-
significant POLE mutations are not usually associated 
with ultrahypermutation, and even in the ultrahypermu-
tated CRC cases harboring ONC/LO POLE mutation, 
tumorous immune signatures or increased immune cell 
densities were not found to be significantly increased in 
both our AMC and TCGA-COADREAD cohorts. There-
fore, we concluded that the tumorous immunogenic 
potential of novel POLE mutations, whether or not the 
mutations are within the exonuclease domain as well as 
single or multiple mutations, should be interpreted in 
the context of their mutational profile and tumorous 
immune cell infiltration because an ultrahypermutation 
may not always lead to an increased tumor immune reac-
tion or a favorable ICI treatment response.

Of note, we found that the genes involved in the PI3K/
AKT/mTOR pathway were frequently altered in the MSI-
high group. Several studies using small subsets of MMR-
deficient CRCs revealed that PIK3CA gene mutations 

were more frequently identified in MMR-deficient than 
MMR-proficient CRCs with frequencies ranged from 30% 
to 40%.44 45 Furthermore, PTEN promoter inactivation 
and/or sporadic mutations are also common in MMR-
deficient CRCs.46 47 In this study, the frequency of PI3K/
AKT/mTOR pathway mutations (75%) in MSI-high 
tumors was higher than in previous reports, probably 
because we examined many PI3K pathway-related genes, 
including PIK3R1, PIK3R2 and AKT1. Recent studies 
implicated PI3K/AKT/mTOR pathway activation in the 
escape of immune surveillance of tumors by regulating 
chemokine and/or immune checkpoint signaling,48 
which also suggests the role of this pathway in immune 
evasion and cancer progression. These findings suggest 
that mutational activation of the PI3K/AKT/mTOR 
pathway may exert an important role in the pathogenesis 
of MSI-high malignancies and targeting the PI3K/AKT/
mTOR pathway in combination with ICI treatment could 
be an efficient treatment strategy, which has been demon-
strated in several pre-clinical models.49 50

In this study, we showed that indel mutation burden 
rather than the total TMB could be a predictor of a TIL 
density in MSI-high and POLE-mutated tumors. We also 
found that not all ultrahypermutated ONC/LO POLE-
mutant tumors are directly associated with increased 
immune cell infiltration, suggesting the immunogenic 
heterogeneity of POLE-inactivated malignancies. MSI-
high tumors with multiple uncharacterized POLE muta-
tions may have similar genomic characteristics as ONC/
LO POLE-mutated tumors, which suggests that MMR defi-
ciency may take precedence over the POLE mutations, 
which may be pathogenic.
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