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Figure 6  sGPC3 induced a worse response to GPC3-specific CAR-T cell treatments when mice were under a greater tumor 
burden. NCG mice were inoculated with luciferase-expressing Hep3B-Mock and Hep3B-sGPC3 cells subcutaneously. When 
the average tumor size of each group reached ~400 mm3, hYP7 CAR-T cells and 32A9 CAR-T cells were infused into mice by 
intravenous injection. (A) Schematic diagram of CAR-T cell treatments. (B) Individual tumor growth curve of each group. The 
arrow indicates the time point of CAR-T cell infusion. (C, D) Kaplan-Meier survival curve of the 32A9 CAR-T cell-treated groups 
(C) or hYP7 CAR-T cell-treated groups (D). Mock T cell-treated group: n=8, 32A9 CAR-T cell-treated groups: n=10 and hYP7 
CAR-T cell-treated groups: n=10. ***P<0.001; ****P<0.001 (log-rank test). CAR, chimeric antigen receptor; hYP7, humanized 
YP7; ns, not significant; sGPC3, shed Glypican-3.
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obvious shrinkage, and the survival of the mice was not 
considerably improved (ffigure 6B,C). The hYP7 CAR-T 
cells exerted stronger cytotoxicity in mice than the 32A9 
CAR-T cells. In response to hYP7-CAR-T cell treatment, 
which extended the survival of mice significantly, the 
tumors in the Hep3B-Mock group exhibited shrinkage 
relatively early and grew back gradually, whereas the 
tumors in the Hep3B-sGPC3 group were inhibited after 
the second injection and recovered rapidly (figure  6B 
and D).

In general, these results indicated that mice with 
sGPC3-overexpressing Hep3B tumors exhibited a worse 
response to treatment with GPC3-specific CAR-T cells.

sGPC3 competes with mGPC3 for the binding of CAR-T cells
To investigate the possible mechanism of the blocking 
effect on CAR-T cells mediated by sGPC3, we first incu-
bated recombinant sGPC3 with GPC3-specific CAR-T 
cells. Both 32A9 CAR-T cells and hYP7 CAR-T cells could 
specifically bind to recombinant sGPC3 (figure 7A). To 
determine whether sGPC3 could induce the activation 
of CAR-T cells, we treated GPC3-specific CAR-T cells 
with the culture supernatant from Hep3B-sGPC3 cells or 
recombinant GPC3. The cultured Hep3B-sGPC3 superna-
tant did not trigger GPC3-specific CAR-T cells to express 
IL-2 (figure 7B). In addition, we found that free recombi-
nant GPC3, in either monomeric (sGPC3-his) or dimeric 
format (sGPC3-Fc mut), could not induce effective secre-
tion of IL-2 (figure  7C and online supplemental figure 
S5). Therefore, sGPC3 bound to GPC3-specific CAR-T 
cells normally but failed to induce the efficient activation 
of CAR-T cells. Interestingly, we found that sGPC3 exhib-
ited strong activating effect on CAR-T cells when coated 
on the plate (online supplemental figure S5). These 
phenomena were consistent with the previous study 
demonstrating that soluble antigen would not trigger the 
activation of CAR-T cells unless they are in dimerization 
or crosslinking format.36

We further evaluated whether recombinant sGPC3 
or Hep3B-sGPC3 cultured supernatant would affect the 
recognition of CAR-T cells and target cells. We found 
that the recognition of hYP7 CAR-T cells and Hep3B cells 
could be blocked by adding recombinant sGPC3 in a dose-
dependent manner (figure  7 and online supplemental 
figure S6). Similar blocking effect was also observed after 
adding the culture supernatant of Hep3B-sGPC3 cells 
(figure 7E). Therefore, these results indicated that sGPC3 
affect CAR-T cells as a competitor of mGPC3.

In summary, our results demonstrated that sGPC3 
functions as a dominant-negative regulator to compete 
with mGPC3 for the binding of CAR-T cells, leading to 
deficient activation and blocked cytotoxicity of GPC3-
targeted CAR-T cells (figure 7F).

DISCUSSION
Solid tumors are composed of multiple components, 
including tumor cells, stroma cells, blood vessels, and 

infiltrated immune cells. These components form a rela-
tively isolated but complicated microenvironment which 
constitutes a major barrier to the development of an 
effective strategy for curing solid tumors.37–39 To pursue 
better efficacy, more attention is focused on improving 
poor tumor penetration and/or overcoming the inac-
tivation of immune cells in solid tumors.40 41 However, 
whether the tumor antigen itself is involved in the insuf-
ficient response of solid tumors to antitumor treatments 
is still obscure.

In the current study, we showed that in addition to 
GPC3-mediated cancer signaling and tumor growth, the 
efficacy of GPC3-specific CAR-T cells is also blocked by 
sGPC3 in vitro and in vivo. This competitive inhibition is 
consistent with the universal agonistic effect of shed cell-
surface proteoglycan on their corresponding membrane 
proteoglycans. Cell-surface proteoglycans include two 
major subfamilies: syndecans and glypicans.42 43 In contrast 
to the well-described proteolytic cleavage of syndecans 
by matrix metalloproteinase, disintegrin and metallo-
proteinase domain-containing proteins (ADAMs), and 
ADAMs with thrombospondin domains,42 there is limited 
available evidence demonstrating how the shedding of 
glypicans occurs. Notum, a palmitoleoyl-protein carbox-
ylesterase, has been reported to induce the release of 
GPI-anchored proteins, including glypicans44; ADAM17 
is regarded as the specific sheddase cleaving glypican-1.45 
We overexpressed or purified truncated GPC3 lacking 
the GPI-anchoring domain to mimic the native sGPC3. 
Although this truncated form of GPC3 was evaluated to 
have similar structure identity and biological function to 
the native GPC3, it is still necessary to identify the detailed 
shedding process of GPC3, including the cleavage site, 
GPC3-specific sheddase and the leading cause of the 
shedding process of GPC3 in HCC.

We constructed sGPC3-overexpressing HCC cells to 
investigate the influence of sGPC3 on CAR-T cell treat-
ment in vitro and in vivo. Under similar tumor burden, 
sGPC3-overexpressing-HCC tumor and Mock-HCC 
tumor exhibited similar levels of surface GPC3 expres-
sion, cell proliferation rate and activation of β-catenin. 
These phenomena suggested that the impaired anti-
tumor activity of CAR-T cells observed in our study might 
be mainly caused by the sGPC3-induced blocking effect. 
However, this model might only represent a simplified 
shedding process of GPC3. Therefore, it would be neces-
sary to further evaluate the sGPC3-induced resistance to 
CAR-T treatment in a model with more clinical-relevance, 
such as an orthotopic model by implanting patient-
derived HCC tumors with GPC3 shedding that naturally 
occurs.

In vitro experiments showed that free sGPC3 did not 
induce the efficient activation of CAR-T cells. Accord-
ingly, previous reports showed that monomeric forms 
of CAR ligands, such as mesothelin (MSLN), cannot 
trigger CAR signaling.46 Moreover, others also reported 
that anti-GFP CAR-T cells and anti-transforming growth 
factor-β CAR-T cells could be activated only when soluble 
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Figure 7  sGPC3 blocked GPC3-specific CAR-T cells from binding membrane GPC3 positive tumor cells. (A) Flow cytometry 
to detect the binding activity of the sGPC3- his protein on GPC3-specific CAR-T cells. CAR-T cells were incubated with 5 μg/
ml sGPC3-his for detection. ELISA was performed to measure the secretion of IL-2 in the culture supernatants of CAR-T cells 
treated with the culture supernatant of Hep3B-sGPC3 cells (B) or sGPC3-his protein (C) for 16 hours. CAR-T cells cocultured 
with Hep3B cells were used as positive control. (D, E) Flow cytometry to detect the binding of hYP7 CAR-T cells and mCherry 
positive Hep3B cells. Cells were incubated on ice at an E/T ratio of 5:1 for 1 hour in the presence of sGPC3-his protein (D) or 
culture supernatant of Hep3B-sGPC3 cells (E). Experiments were repeated with T cells derived from three donors. Data from 
one of three repeated experiments are presented as the mean±SD. **P<0.01; ***P<0.001. (F) Proposed working model of sGPC3 
in GPC3- specific CAR-T cell therapy. CAR, chimeric antigen receptor; hYP7, humanized YP7; IL-2, interleukin; MFI, mean 
florescence intensity; N.D., undetectable; ns, not significant; sGPC3, shed glypican-3; sup., supernatant.
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antigen were dimerized or crosslinked.36 In our study, we 
observed that the crosslinked sGPC3 triggered the activa-
tion of CAR-T cells in vitro (online supplemental figure 
S5). This observation indicates that the effect of sGPC3 
on CAR-T cells would be more complicated if sGPC3 was 
crosslinked in HCC tumor locally through its HS chains 
or other extracellular matrix molecules. Therefore, it 
would be interesting to examine this point in orthotopic 
mouse model or a mouse HCC tumor model. Besides 
activation, more detailed issues such as T cell exhaustion 
should also be examined to evaluate the effect of cross-
linked shed antigen.

Our study provides a proof-of-concept example 
showing that the antigen shedding might cause worse 
response to immunotherapy in HCC. A recent study on 
secreted Programmed cell death-Ligand 1 (sPD-L1) vari-
ants showed that sPD-L1 functioned as a decoy of a PD-L1 
blockade antibody.29 This inhibitory trend of sPD-L1 is 
consistent with our current observations to some extent. 
MSLN presents a substantial amount of shedding in many 
tumor types. However, MSLN shedding seems to exert no 
significant blocking effect on MSLN-specific CAR-T cells 
in vitro.46 Thus, whether the sGPC3-induced inhibitory 
effect on CAR-T cells observed here is only an antigen-
specific phenomenon or represents a universal immune 
escape mechanism in solid tumors requires further 
investigation.

In conclusion, we have generated novel anti-GPC3 
CAR-T cells for the treatment of HCC and demonstrated 
that sGPC3 attenuates the antitumor activities of CAR-T 
cells in vitro and in vivo, possibly by competing with 
membrane-bound GPC3 to bind CAR-T cells, indicating 
that sGPC3 may serve as a meaningful indicator for the 
prognosis of CAR-T therapy. Our results provide a new 
understanding of the mechanisms of tumor immune 
escape in HCC patients after receiving immunotherapies 
targeting GPC3.
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