CD122-directed interleukin-2 treatment mechanisms in bladder cancer differ from αPD-L1 and include tissue-selective γδ T cell activation

Supplemental Figures
Supplemental Fig 1

CD8^+ T cell depletion in orthotopic MB49 bladder cancer. (A) Depletion efficiency of CD8^+ T cells using 250 μg αCD8, two days after injection, as gated on live CD45^+ cells in bladder.
Supplemental Fig 2 γδ T cell effects in orthotopic MB49 bladder cancer. (A) Depletion efficiency of γδ T cells using 75 μg anti-γδ TCR, two days after injection, as gated on live CD45+ CD8- CD4- NK1.1- cells in bladder. Assessment of bladder weight (B) and tumor prevalence (C) in wild-type and TCRδKO mice using an autochthonous carcinogen-based bladder cancer model. (B-C) N=22-25/group. (B) p, unpaired t test. (C) p, two tailed Mann-Whitney U test.
Supplemental Fig 3

Supplemental Fig 3 Tyδ17 cell prevalence and IL-2c effects in orthotopic MB49 bladder cancer. Flow cytometric analysis showing (A) frequency of Vγ4 chain usage in bladder as gated on live Vγ1- Tyδ17 cells and (B) absolute Tyδ17 cell number. (A-B) N=6-8/group. (B) p, unpaired t test.
Supplemental Fig 4

IL-2c does not affect Treg function or M-MDSC content in orthotopic MB49 bladder cancer. Flow cytometric analysis of regulatory T cell (Treg) function using the frequency of (A) Granzyme B producing Tregs. (B-D) Assessment of a fragile Treg phenotype defined as IFN-γ⁺ PD-1⁺ T-bet⁺ FoxP3⁺ Tregs using either (B,C) mean fluorescence intensity (MFI) or (D) frequency of FoxP3⁺ Tregs. (E) Frequency of monocytic-myeloid derived suppressor cells (M-MDSCs), defined as CD11b⁺ Ly6G⁻ Ly6Chi cells, in orthotopic MB49 bladder cancer. (A-E) N=6-8/group. p, unpaired t test.