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survival (Ptrend >0.1) (online supplemental figure S13). 
Conversely, the values of functions evaluating both 
mature CD14+HLA- DR+ (Ptrend=0.0004) and immature 
CD14+HLA- DR− subsets (Ptrend=0.0007) were signifi-
cantly prognostic and showed opposite effects (figure 3). 
Accordingly, their difference (GTumor:CD14+HLADR+(20 µm)- 
GTumor:CD14+HLADR−(20 µm)), where high values represent a 
high likelihood of any tumor cell being colocated with 
at least one mature monocytic cell yet a low likelihood 
of colocation with an immature monocytic cell, exhibited 
an even stronger prognostic association (Ptrend <0.0001; 
HR for Q4 (vs Q1), 0.37, 95% CI 0.24 to 0.57). Given 
that this association could be confounded by cell density, 
we directly compared the prognostic power of mature 
and immature monocytic cell densities and the G- cross 
proximity measurement by including the proximity and 
density variables in one Cox regression model, with 
reciprocal adjustment (online supplemental table S6). 
This analysis indicated that both CD14+HLA- DR+ and 
CD14+HLA- DR− cell densities and the G- cross proximity 
measurement independently contributed to prognostic 
significance.

DISCUSSION
We leveraged recent technical advances in multiplexed 
immunofluorescence8 to build a novel assay enabling in 
situ characterization of detailed myeloid cell phenotypes 
in colorectal cancer. In addition to monocytic (CD14) 
and granulocytic (CD15) lineage markers, our panel 
contained macrophage maturation marker HLA- DR (an 
MHC class II cell surface receptor that supports antigen 
presentation to T cells),39 myeloid marker CD33 (a trans-
membrane sialic acid binding receptor downregulated 
during myeloid cell maturation),40 immunosuppressive 
marker ARG1 (an enzyme catalyzing the hydrolysis of 
arginine to ornithine and urea),10 and pan- cytokeratin 
(KRT) as a tumor cell marker. This panel design enabled 
us to simultaneously examine myeloid cell lineage (mono-
cytic vs granulocytic), maturity (HLA- DR and CD33), and 
suppressive potential (ARG1) in a manner not possible 
with single marker approaches. This combinatorial 
approach was required for accurate cell identification 
since most of the included markers are not specific for 
the myeloid cell populations under study. For example, 
HLA- DR can be expressed by B cells and dendritic cells 

Figure 3 Spatial analysis of CD14+HLA- DR+ and CD14+HLA- DR− myeloid immune infiltrates with the tumor:myeloid cell G- 
cross function (GTumor:Myeloid cell). (A and B) Example myeloid cell patterns and corresponding GTumor:Myeloid cell (r) plots, estimating 
the probability of any tumor cell having at least one neighboring myeloid cell of the specified type within an r µm radius. (C) 
Univariable (black) and multivariable (red) Cox proportional hazards regression models for cancer- specific survival according 
to GTumor:Myeloid cell (20 µm) ordinal quartile categories (C1–C4). The multivariable Cox regression models initially included sex, 
age, year of diagnosis, family history of colorectal cancer, tumor location, tumor differentiation, disease stage, microsatellite 
instability, CpG island methylator phenotype, KRAS, BRAF, and PIK3CA mutations, and long- interspersed nucleotide element-1 
methylation level. A backward elimination with a threshold P of 0.05 was used to select variables for the final models.
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in addition to monocytic lineage cells,39 41 while CD33 is 
expressed by mast cells.22

We applied our assay to 913 colorectal cancers in two 
US nationwide prospective cohort studies. We found that 
high CD14+ monocytic and CD15+ granulocytic cell densi-
ties in tumor stroma were associated with low cancer- 
specific mortality independent of potential confounding 
factors such as disease stage, MSI status, and BRAF, KRAS, 
and PIK3CA mutation status. Furthermore, we found that 
these populations were heterogenous, and finer- grained 
classification of CD14+ monocytic cells according to 
HLA- DR expression revealed opposing prognostic roles 
for mature HLA- DR+ and immature HLA- DR− subsets 
within intraepithelial regions, with high density of mature 
HLA- DR+ cells associating with lower cancer- specific 
mortality and high density of intraepithelial immature 
HLA- DR− cells associating with higher cancer- specific 
mortality.

Since the discovery of the expansion of immature 
myeloid cells in cancer,4 5 a multitude of studies have 
assessed the potential mechanisms involved in their tumor- 
promoting activity.6 42 Experimental evidence suggests 
that these cells can produce anti- inflammatory cytokines, 
including interleukin 1043 and transforming growth factor 
beta 1,44 thereby reducing T cell infiltration.45 Moreover, 
they may produce angiogenic mediators or growth factors 
promoting tumor cell proliferation.45 46 Conversely, the 
mechanism linking mature HLA- DR+ monocytic cells 
with better survival may be related to this cell type’s ability 
to efficiently present antigens to T lymphocytes,47 thereby 
activating antitumor immunity. Indeed, we found that 
high densities of CD14+HLA- DR+ cells, but not CD14+H-
LA- DR− cells, were associated with high lymphocytic reac-
tion scores.

In addition to CD14+ monocytic cells, higher CD15+ 
granulocytic cell density in tumor stromal regions was 
associated with favorable prognosis. This is consistent with 
several previous studies that have evaluated the prognostic 
significance of CEACAM8+ (CD66b+)26 48 49 granulocytic 
cells in colorectal cancer and stands in contrast to other 
tumor types, such as hepatocellular carcinoma50 and renal 
cell carcinoma,51 where strong granulocytic infiltrates 
have been associated with worse prognosis. These tumor 
type- specific results may be attributable to the diversity 
and plasticity of granulocytes within the tumor microen-
vironment, as such cells can participate in both tumor- 
promoting functions (such as angiogenesis, extracellular 
matrix remodeling, and immunosuppression) and anti-
tumor roles (such as direct killing of tumor cells).45 Our 
finding of the favorable prognostic value of CD15+ gran-
ulocytes suggests that the antitumorigenic granulocytic 
subpopulations may outnumber protumorigenic ones 
within the colorectal cancer microenvironment.

ARG1 is considered one of the most important immu-
noregulatory enzymes in the tumor microenvironment, 
contributing to suppression of the T cell response 
through arginine depletion.10 52 In murine tumor models, 
high ARG1 expression has commonly been observed 

in monocytic lineage cells whereas, in humans, strong 
expression is most frequently seen on polymorphonu-
clear cells instead of monocytic cells.10 53 Consistent with 
these prior human studies, we found that ARG1 positivity 
was common in CD15+ granulocytic cells but relatively 
rare in CD14+ monocytic cells in the colorectal cancer 
microenvironment in a large human population- based 
sample. Contrary to our exploratory hypothesis, higher 
densities of granulocytic or monocytic ARG1+ cells were 
not associated with adverse clinical outcome. This may 
be related to: (1) a lower functional relevance for ARG1 
as compared with other immunosuppressive pathways 
in colorectal cancer (such as the IDO1 pathway and the 
PDCD1 (PD-1)- CD274 (PD- L1) pathway,52 54 which were 
not evaluated in this study), (2) potential production of 
proinflammatory mediators by ARG1+ cells, thereby acti-
vating the immune response, or (3) additional uniden-
tified factors, all of which are relevant topics for future 
studies. Of note, murine and human immune systems 
may have significant differences55; many promising find-
ings in mouse models have not translated into the treat-
ment of human disease, supporting the clinical relevance 
of large- scale analyses of the tumor microenvironment 
using human specimens.

We discovered previously unappreciated differences in 
the infiltration patterns of various myeloid subsets. Both 
CD14+ monocytic cells and CD15+ granulocytic cells were 
preferably located in tumor stroma, although CD15+ cells 
were, on average, closer to tumor cells than CD14+ cells. 
Within the CD14+ population, mature CD14+HLA- DR+ 
cells (and CD14+CD33− cells) were located closer to tumor 
cells as compared with immature CD14+HLA- DR− cells 
(and CD14+CD33+ cells). This suggests that the maturity 
of CD14+ cells may influence their interaction with tumor 
cells, with the HLA- DR+ subset having closer contact with 
tumor cells as compared with the HLA- DR− subset. Alter-
natively, close contact with tumor cells may itself drive 
the maturation of CD14+ cells. We hypothesize that these 
mature monocytic cells may participate in tumor cell 
phagocytosis, considering their association with favorable 
prognosis. Notably, however, CD14+HLA- DR+ cells were 
associated with longer survival in both intraepithelial 
and stromal compartments, while the adverse prognostic 
effect of CD14+HLA- DR− cells was only seen in the intraep-
ithelial compartment, suggesting that the significance of 
the immature HLA- DR− subset rather than the mature 
HLA- DR+ subset may be dependent on the close interac-
tion with tumor cells. Modeling the proximity of tumor 
cells with CD14+HLA- DR+ and CD14+HLA- DR− cells with 
G- cross function, we found that the G- cross proximity 
measurement (evaluating the difference in the likeli-
hood of any tumor cell in the sample having at least one 
CD14+HLA- DR+ cell vs CD14+HLA- DR− cell within 20 µm 
radius) was a prognostic factor independent of the densi-
ties of these cells, suggesting that proximity measurement 
of specific myeloid populations may improve the prog-
nostic categorization compared with simpler, density- 
based analyses.
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Each colorectal cancer is unique and arises through the 
complex interplay between endogenous and exogenous 
factors, neoplastic cells, and non- neoplastic cells.56 The 
current clinical practice recommendations for colorectal 
cancer are mainly based on disease stage,57 although there 
is an increasing need for more accurate prognostic and 
predictive parameters to guide personalized treatment. 
While our results support the prognostic significance of 
myeloid cells in colorectal cancer, further investigation is 
required to validate the findings and compare our assay 
to other methods for evaluating immune cell infiltrates, 
such as the T cell based Immunoscore that has been inter-
nationally validated using samples from more than 2600 
patients.58

There are important limitations that need to be consid-
ered in the interpretation of these results. First, the study 
was based on TMAs. Myeloid immune infiltrates in a small 
tissue sample may not fully reflect overall tumor infiltra-
tion. However, multiple tumor cores were examined for 
most tumors (median 2), and we observed reasonably 
high core- to- core correlation, supporting the validity 
of the TMA approach. Second, while our multiplex 
immunofluorescence assay could detect more detailed 
myeloid cell phenotypes than standard immunohisto-
chemistry, the number of markers was still limited. The 
best characterized human MDSC subsets include mono-
cytic CD14+HLA- DR-CD15− cells and polymorphonuclear 
CD15+CD14− cells within the myeloid population, while 
less mature MDSCs are characteristically HLA- DR-CD33+.6 
However, these phenotypic criteria do not enable unequiv-
ocal distinction of monocytic MDSCs from macrophages 
and monocytes, or polymorphonuclear MDSCs from 
mature neutrophils or eosinophils; functional suppres-
sion assays would be required to confirm the suppressive 
activity of the cells6 and are not compatible with archival 
FFPE material. Experimental studies evaluating the func-
tional and biologic roles of various MDSC markers are also 
warranted, and orthogonal methods could be contrasted 
to protein expression based methods for MDSC- like cell 
detection. Third, data on cancer treatments were limited. 
Nonetheless, treatment decisions were likely based 
predominantly on disease stage, which was included in 
the multivariable Cox regression models. Future studies 
should investigate potential interactions between treat-
ment and myeloid or monocytic cells in tumor tissues in 
relation to clinical outcomes.

The strengths of the study include the use of multiplex 
immunofluorescence combined with digital image anal-
ysis to phenotype granulocytic and monocytic myeloid 
cells in the tumor microenvironment. Our comprehensive 
tumor dataset enabled us to control for a large number 
of potential confounders, such as MSI status, CIMP status, 
KRAS, BRAF, and PIK3CA mutation status, and LINE-1 
methylation. The study population was derived from cases 
in many hospitals across the USA, increasing the general-
izability of the results compared with retrospective, single 
institution studies. We were able to control for selection 
bias due to tissue availability using the IPW method, as 

we could ascertain nearly all incident colorectal cancer 
cases in the cohort. Moreover, we used a stringent α level 
of 0.005 to reduce the possibility of false positive findings, 
thereby improving the likelihood that our findings are 
reproduced.34 However, additional validation in indepen-
dent datasets will still be required to confirm the results.

In conclusion, myeloid cells exhibit strong, subset- 
specific prognostic significance in colorectal cancer, with 
mature CD14+HLA- DR+ and immature CD14+HLA- DR− 
monocytic phenotypes most notably showing opposite 
effects (favorable and unfavorable, respectively). These 
results support multimarker evaluation of myeloid 
immune infiltrates as a robust, quantitative prognostic 
tool in colorectal cancer.
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