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Figure 4  Combination of iRGD-anti-CD3-modified T cells with PD-1 blockade effectively controlled tumor growth. (A) 
Immunohistochemistry analysis of PD-L1 and (B) PD-1 expression in peritoneal tumors. Scale bar, 100 µm. (C–F) MKN45-luc 
peritoneal metastasis tumor model, n=3. Two weeks after tumor implantation (day 15), 1×107 T cells modified with 100 µg iRGD-
anti-CD3 or control reagents or codelivered with 3 µg free iRGD were given intraperitoneally every other day for 5 days. PD-1 
blockade of 250 µg was given intraperitoneally every other day for a total of three doses. (C) Anterior bioluminescence images 
of tumor burden at days 14 (before treatment), 21 and 28 after tumor inoculation. (D) Curves of tumor signal at three indicated 
timepoints during the treatment course. (E) Tumor signal quantification at 21 days and (F) 28 days after tumor inoculation. (G) 
1×107 total T cells or with CD8/CD4 depletion were modified with 100 µg iRGD-anti-CD3 and then injected into mice bearing 
disseminated MKN45 peritoneal tumors every other day three times. PD-1 blockade of 250 µg was given intraperitoneally 
every other day for three injections. Tumors were harvested after 2 weeks of treatment and weighed. (H) Tumor nodules in all 
treatment groups were photographed and (I) weighed in the MGC803 peritoneal metastatic tumor model. (J) Representative 
images and (K) weight of excised tumors in LOVO peritoneal metastasis tumor model. (L) Tumor growth profiles and (M) 
survival analysis in MKN45 subcutaneous mouse model, n=6. Data are analyzed with Student’s t-test unless specified, and are 
represented as mean±SEM; *p<0.05,**p<0.01, ***p<0.001. ns, not significant.
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T-cell infiltration, a number of strategies including trans-
ducing T cells with chemokine receptors, intratumoral 
injection of IFN-γ to induce chemokine production, and 
combinations with anti-angiogenesis agents or ICIs have 
been investigated.23–25 These therapies required complex 
genetic or technological manipulation or may increase 
treatment-related adverse effects. Here we provided an 
innovative and efficient strategy by functionalizing T cells 
with the tumor-penetrating peptide iRGD. iRGD facili-
tates T-cell infiltration in two aspects. First, iRGD binds to 
elevated integrins which support firm T-cell adhesion, and 
therefore increases accumulation of modified T cells in 
tumor vessels.19 20 Then by binding to the second receptor 
NRP-1, iRGD initiates two distinct pathways for T cells to 
migrate through blood walls. One pathway that opens 
endothelial junctions through the tyrosine phosphoryla-
tion of VE–cadherin has been previously demonstrated.12 
Here we reported another equally important but less often 
concerned mechanism using TEM. Vesicular channels 
composed of VVOs clusters were found within the cyto-
plasm of endothelial cells by which T cells migrated directly 
through the body of the endothelium. These VVOs usually 
occur in ‘thin’ parts of the endothelium so that T cells may 
extravasate with less distance and quickly reach the tumor 
parenchyma.20

iRGD can be modified on T-cell surface in different 
ways. DSPE-PEG was used in our previous work; DSPE was 
inserted into cell membranes through hydrophobic inter-
action, while PEG was connected to iRGD through Michael 
addition–reaction, thereby anchoring iRGD on the T-cell 
surface. Although this method significantly enhanced T-cell 
infiltration capability, we aimed to find an optimal modi-
fication approach which would further improve killing 
activity of infiltrating T cells and simultaneously avoid 
disruption that DSPE-PEG might cause on cell membranes. 
The anti-CD3 scFv is such an ideal connector as it triggers 
activation signaling on binding to the CD3ε on the T-cell 
surface. Its efficacy and safety have been fully demonstrated 
by BiTE therapy. Besides the anti-CD19 BiTE approved for 

the treatment of hematological malignancies, at least five 
BiTEs are being tested in phase I clinical trials for solid 
tumor indications and have shown promising antitumor 
effects with manageable safety profiles.15 26 27 Therefore, we 
genetically fused iRGD with the anti-CD3 scFv and gener-
ated a novel recombinant antibody iRGD-anti-CD3. T cells 
modified with iRGD-anti-CD3 showed four to seven times 
more accumulation and penetration in both MCSs and 
in vivo tumor nodules than T cells alone. More impor-
tantly, iRGD-anti-CD3 induced T-cell activation evidenced 
by upregulation of activation markers, Th1-cytokines, and 
cytotoxicity against monolayer tumor cells and MCSs. 
Enhanced penetration, together with activation, eventually 
translated into potent antitumor efficacy of T cells modified 
with iRGD-anti-CD3, as demonstrated in several xenograft 
mouse models.

In addition to RGD-anti-CD3 for highlighting the impor-
tance of NRP-1 pathway to T-cell penetration, we also 
included two other control reagents CG7C-anti-CD3 and 
free iRGD. CG7C-anti-CD3, which recognizes neither tumor 
blood vessels nor tumor tissues, had no effects on activation 
or antitumor efficacy of T cells. This supports that monova-
lent CD3 binding is not enough to trigger T-cell signaling 
due to low affinity, unless the CD3 scFv is presented to T cells 
in a multivalent fashion by target cells.28 29 Therefore, T-cell 
lysis could be exclusively redirected to tumor sites with aber-
rant expression of iRGD receptors while sparing normal 
tissues, as is the case with specific T-cell responses. iRGD has 
been widely reported to enhance tumor-specific delivery of 
anticancer drugs, and this effect does not require drugs to 
be conjugated to the peptide.10 30 However, in our study, 
T cells coadministrated with free iRGD showed minimal 
improvements in tumor penetration compared with those 
modified with iRGD-anti-CD3, although the same amount 
of iRGD was given in both groups. This may be attributed 
to the limited opening time of migration routes triggered 
by free iRGD (within 15 min) and the different trafficking 
times between iRGD and T cells into tumors. In contrast, in 
the iRGD-anti-CD3 group, the opening time of migration 

Figure 5  Underlying mechanisms of T-cell infiltration mediated by iRGD-anti-CD3. (A) Representative TEM images of tumor 
vessels at 24 hours after injection of PBS (left), RGD-anti-CD3 (middle) and iRGD-anti-CD3 (right). Structures in red dashed 
box are shown with higher magnification in the corresponding panels below. Blue arrows: single vesicles, yellow arrows: fused 
vesicles. Scale bars, 1 µm (upper panels), 0.5 µm (under panels). (B) vesicle density shown as the number of vesicles per 1 µm2 
of cytoplasmic area. data are represented as mean±SEM; n=3. Student’s t-test, ***p<0.001. C, cytoplasm of the endothelial cell; 
N, nucleus of the endothelial cell; PBS, phosphate-buffered saline; R, red blood cell; TEM, transmission electron microscopy.
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routes could be extended to as long as 24 hours. Moreover, 
immobilizing iRGD on surface of T cells allows them to 
reach tumor sites at the same time.

Still, combination with modified T cells and PD-1 blockade 
did not inhibit tumor growth in the subcutaneous tumor 
model to a comparable extent as in peritoneal metastasis 
models. At the end of tumor growth profiling, we found 
that the combination therapy caused necrosis inside subcu-
taneous tumors, and this antitumor effect could not be 
reflected by measuring tumor volumes. In vivo functional 
imaging approaches such as bioluminescence imaging may 
be more appropriate to accurately evaluate tumor burdens 
and treatment effects. Moreover, necrosis could lead to 
reduced tumor vascular supply, and hence trafficking of 
modified T cells, which greatly restricted T-cell efficacy 
against residual tumor tissues. Combining with other ther-
apeutic strategies might be perceived as pivotal to further 
increase antitumor potency in subcutaneous models, and 
we are currently investigating the combination of local 
radiotherapy.

Taken together, we developed a novel bifunctional agent, 
iRGD-anti-CD3. T cells modified with iRGD-anti-CD3 
exhibited both enhanced penetration capability and killing 
activity in MCSs and xenograft tumor models. Moreover, 
the combination with PD-1 blockade revealed superior anti-
tumor effects. This combination strategy holds great poten-
tial to improve the efficacy of adoptive cell immunotherapy 
in multiple solid tumor types.
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