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inadequate, any survival benefit was only temporary, 
and inevitable tumor progression would ultimately limit 
overall survival (figure  3B,C; insets). These survival 
kinetics depend not solely on therapeutic features of 
ICI but rather on the interplay between patient and ICI 
characteristics. To illustrate this, we simulated twenty 
patients with identical immune systems (ie, identical T 
cell killing rates). In the absence of ICI therapy, varia-
tion in the tumor growth rate—that is, variation in the 
distance to a tipping point—led to a limited variation in 
survival (figure 3D; gray bars). When these same patients 

were treated with ICI, a survival benefit is induced in all 
patients. However, the extent of this benefit differs and 
depends on the distance to a tipping point. Following 
clinical observations, long-term survival is only induced 
in the subset of patients close to a tipping point 
(figure 3D; green bars). Similar findings were obtained 
in a population of patients with identical tumors but 
different immune systems. Without treatment, hardly 
any survival variation is present (figure 3E; gray bars). 
Again, treatment with ICI induced dichotomous clinical 
outcomes: a small survival benefit in most patients, with 

Figure 3  Tipping points induce dichotomous clinical outcomes in heterogeneous patient populations. (A) Treatments target 
processes or cell populations in the tumor microenvironment. (B, C) Two criteria need to be met to induce long-term survival: 
(B) ICI need to augment T cell killing sufficiently and (C) the treatment effect needs to be retained for a prolonged time. An 
inadequate treatment effect or limited treatment duration led at maximum to a temporary survival benefit. (D, E) In patient 
populations with variation in only (D) the tumor (ie, growth rate), or (E) the immune system (ie, T cell killing rate), the distance 
to a tipping point determines the clinical benefit. Without treatment, survival was limited (gray bars). In contrast, ICI induced 
long-term survival solely in patients close to a tipping point (green bars). See also online supplemental table 3. ICI, immune 
checkpoint inhibition; OS, overall survival.
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long-term survival in a subset (figure 3E; green bars). 
Hence, the mere presence of a tipping point yields 
heterogeneity in treatment outcomes.

Tipping points determine patient outcomes in dynamic patient 
trajectories
Thus far, our simulations considered tipping points gener-
ated in patients with fixed characteristics. However, disease 
courses in patients are certainly not fixed and are, to a 
certain extent, subject to (possibly random) variation. 
We hypothesized that interpatient variability in clinical 
outcomes could be partially attributable to this dynamic 
behavior of cancers and the interaction with the immune 
system. Such variation might reflect biological processes 
(eg, accumulating mutations, the expression of check-
point molecules, and the availability of nutrients) that 
alter antitumor immunity and promote or hamper tumor 
development. We reasoned that the subsequent dynamics 
could drive patients towards and ultimately over a tipping 
point—or move patients away from it, which would limit the 
survival benefit of these treatments. To verify this hypoth-
esis, we simulated the effect of dynamically evolving tumors 
(figure  4A) or immune systems (figure  4B) in identical 
patients compared with a static reference patient. Specifi-
cally, we varied the tumor growth rate and the T cell killing 
rate randomly over time (parameter values are included in 
online supplemental table 4). On reaching a diagnosable 

tumor volume, all patients in these examples were treated 
with ICI. As expected, stochastic dynamics prompted 
survival differences and induced a survival benefit in a 
subset of patients. In a heterogeneous patient population, 
this led to an interesting finding: the initial distance to a 
tipping point, along with the dynamics itself, determined 
the clinical outcome of patients treated with ICI (figure 4C, 
online supplemental figure 2). At population level, this 
led to a distinction between three subsets of patients: (1) 
patients far away from a tipping point with an unmodifi-
able bad prognosis (non-responders), (2) patients close to 
a tipping point with a favorable prognosis (responders), 
and most importantly, (3) patients in between these 
groups (potential responders). In the last subset, tumor 
dynamics ultimately determined the treatment response, 
and thereby the clinical outcome (figure 4C; gray box). A 
clinically important ramification of dynamic trajectories is 
that even if the subset to which a patient belongs is known 
at baseline, dynamics could alter the distance to a tipping 
point and, thereby, the prognosis of a patient. Therefore, 
it might be impossible to predict the prognosis solely 
based on characteristics measured at diagnosis. Dynamic 
trajectories can significantly diversify patient outcomes, 
meaning that continuous variation in the tumor growth 
rate (figure 4D) or T cell killing rate (figure 4E) leads to 
an entire spectrum of patient outcomes.

Figure 4  Survival outcomes are strongly affected by evolving patient dynamics. (A, B) Examples of dynamic disease courses 
in patients with identical tumors and immune systems at baseline, respectively. (A) Evolving tumors (ie, random variation in 
tumor growth rate over time) and (B) continuous variation in the potency of the immune system (ie, killing rate) lead to divergent 
survival outcomes. The gray dotted lines indicate the baseline values for the growth rate and killing rate, respectively. (C) 
Dynamic trajectories in a heterogeneous patient population can move patients towards or away from a tipping point. The gray 
box indicates patients in which dynamic trajectories (blue) strongly alter survival outcomes compared to static trajectories (red). 
See also online supplemental figure 2. In dynamic trajectories, (D) baseline tumor growth and (E) baseline T cell killing rates 
cannot accurately predict overall survival (OS). All patients in these examples are treated with ICI. The red and black dotted lines 
indicate the 25% and 75% quantiles, respectively. See also online supplemental table 4.
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Implications of tipping points for biomarker discovery studies
Biomarker discovery studies aim to improve the prediction 
of patient survival on treatment. We observed that tipping 
points are crucial in shaping survival kinetics. Therefore, 
accurate survival predictions would require the consider-
ation of tipping points. Ideally, a prognostic biomarker 
(or biomarker panel) would consistently distinguish long-
term survivors from their counterparts. Since the non-
linear survival dynamics following a tipping point weaken 
the correlation between a single biomarker and survival, 
the question is: how can we screen for biomarkers in a 
more efficient manner that takes this tipping point into 
account?

At first, we approached this question with an in silico 
biomarker discovery study. We measured the value of two 
potential biomarkers at baseline in simulated patients 
(n=100) that were subsequently treated with ICI (cohort 
characteristics are specified in online supplemental table 
5). We simplified the cohort by fixing the tumor and 
immune characteristics of these patients over time and 
assumed to have access to an entirely accurate biomarker 
(ie, no measurement error; figure  5A). Within this 
cohort, we predicted the prognosis of patients based on 
either the tumor or immune marker (the first and second 
columns of figure  5A, respectively). As is common in 
practice (though from a statistical point of view far from 
ideal), we dichotomized the biomarker using its median 
as a cut-off. Although survival differentiation based on 
these biomarkers alone was partially possible, it remained 
far from optimal. However, when we constructed a 
biomarker panel including both biomarkers, it highly 
accurately discriminated short-term from long-term survi-
vors (third column of figure 5A). Note that despite vari-
ability in time from diagnosis, the initial plateau in the 
survival curves was caused by the fact that all tumors were 
diagnosed with identical sizes and immediately treated.

In clinical practice, the assumption of a ‘fixed’ patient 
trajectory does not hold. Therefore, we simulated this 
cohort again with dynamic trajectories. Due to the 
dynamics, a subgroup of patients did not develop clinical 
tumors and was excluded from the analysis. The predic-
tion of a patient’s prognosis with a single biomarker, either 
from the tumor or the immune system, in a dynamic 
cohort became increasingly challenging (the first and 
second columns of figure 5B). The combination of both 
markers in a biomarker panel increased the predictive 
capacity slightly, enabling the prediction of prognosis to 
some extent. However, in line with the notion of person-
alized medicine, the accurate and individualized predic-
tion of prognosis based on baseline characteristics was 
not feasible in a significant subgroup of patients due to 
dynamic tumor-immune interactions (third column of 
figure 5B).

These in silico experiments suggest that biomarker 
discovery efforts benefit from considering tumor and 
immune markers in concert rather than alone. To test 
this hypothesis, we retrospectively analyzed clinical data 
derived from previous trials in patients with metastatic 

melanoma (n=58; see baseline characteristics in online 
supplemental table 6).43 We assessed whether a combina-
tion of two biomarkers would provide more information 
on a patient’s survival than either marker alone. Baseline 
lactate dehydrogenase (LDH) was selected as a surrogate 
marker for tumor growth, and the ratio between immu-
nohistochemically determined intratumoral versus peri-
tumoral (I/P) immune cells on the primary tumor was 
selected as an immune marker. We then used two different 
methods to measure the amount of information these 
markers provide on patient survival. First, we applied 
linear discriminant analysis to determine marker cut-off 
values that distinguish ‘short survivors’ (<9 months) from 
‘long survivors’ (>9 months, corresponding to the median 
survival in the cohort). A cut-off based on the tumor 

Figure 5  Non-linear tumor-immune dynamics complicate 
biomarker discovery. (A) An in silico biomarker discovery 
study in a ‘fixed’ patient cohort: while a single biomarker—
either a tumor or an immune marker—can predict survival to 
some extent (the first and second columns), information from 
both markers in a biomarker panel enhances the predictive 
capacity greatly (third column). (B) Dynamic disease 
trajectories challenge survival prediction with ‘baseline’ 
biomarkers. In dynamic disease courses, the predictive value 
of single ‘baseline’ biomarkers is limited (the first and second 
columns; compare to (A). A biomarker panel improves 
survival predictions in this cohort (the third column) but is still 
defied by evolving dynamics. See also online supplemental 
table 5. OS, overall survival.  on June 4, 2023 by guest. P
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marker LDH alone correctly classifies 71% of patients 
(figure 6A), which increased to 78% when using the I/P 
ratio as an immune marker instead. A combination of 
both markers achieves 86% accuracy, with the discrimi-
nation line following a roughly diagonal slope akin to the 
tipping point in our ‘in silico’ cohort (figure 2). Second, 
we compared Cox proportional hazard models based 
on LDH alone and I/P ratio alone to a model including 
both markers. Both LDH (likelihood ratio test: p=4×10−7) 
and I/P ratio (p=3.6×10−7) explained survival better than 
chance on their own, but a bivariable model (p=9.3×10−10; 
online supplemental table 7) provided the best fit to the 
data as measured by a Bayesian Information Criterion, 
which was lower by 11.6 compared with the LDH-only 
model and by 20.7 compared with the I/P ratio-only 
model. The Kaplan-Meier plots shown in figure 6B illus-
trate the performance of each model by comparing the 
patients with the highest 50% estimated relative hazard 
to the lowest 50%. These results support our in silico-
generated hypothesis that a combination of tumor and 
immune markers form a better basis for patient stratifica-
tion than either marker on its own.

Two important findings are derived from these obser-
vations: First, due to the non-linear tumor-immune 
dynamics with respect to survival, it can be complicated for 

a single biomarker to predict a patients’ prognosis accu-
rately. Since survival kinetics emerge from the interplay 
between a cancer and the immune system, biomarkers 
from both systems need to be incorporated simultane-
ously into a biomarker panel to improve the predictive 
value. Second, biomarker measurements at baseline are 
merely a situational snapshot of the disease conditions 
at a specific point in time. Depending on the magnitude 
of the dynamics, it might become challenging or even 
impossible to predict the prognosis of patients from these 
biomarkers correctly.

DISCUSSION
This study investigated how tumor-immune dynamics 
relate to ICI-induced treatment responses and survival 
kinetics of patients. We predict that a tipping point is 
present in the tumor-immune interaction. This finding 
implies that underneath the intricate interplay between 
a developing malignancy and the immune system, two 
contrasting disease states determine disease outcome: a 
state where the immune system controls tumor outgrowth 
and a state in which a tumor escapes immune defense. 
A stable ‘steady state’ in which tumor growth and the 
immune response perfectly balance each other for 

Figure 6  A composite biomarker consisting of a tumor and an immune component outperforms single markers in a 
retrospective analysis of metastatic melanoma patients. (A) A linear classifier based on LDH level at baseline, a surrogate marker 
for tumor growth, classified 71% of all patients correctly as short survivors (<9 months) or long survivors (>9 months). With 
an accuracy of 78%, the I/P ratio—an immune marker—performs better in this cohort. A linear combination of both markers 
leads to an even better classification (86% accuracy) than either one alone. (B) A Cox proportional hazard model based on both 
markers fits the data better than models based on either marker as measured by the Bayesian Information Criterion (BIC) (the 
lower, the better, and differences above 10 are considered strongly favoring one model over another). I/P, intratumoral versus 
peritumoral; LDH, lactate dehydrogenase; OS, overall survival.
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extended periods seems only plausible in a subclinical 
setting. We show that treatment with ICI can induce a 
survival benefit by shifting a patient over a tipping point, 
thereby tipping the balance in tumor-immune dynamics 
in favor of survival. In line with clinical observations of 
interpatient variability in disease courses, we found that 
dynamics in patient trajectories pose major challenges 
for treatment response prediction. Moreover, we showed 
how a tipping point in dynamic patient trajectories defies 
simple strategies for outcome prediction in biomarker 
discovery studies. In particular, when facing highly 
dynamic disease courses, adaptive treatment strategies 
based on continuous monitoring might be more prom-
ising than simple patient stratification at baseline.

Tipping points are well known in complex systems such 
as financial markets and ecosystems but are also present 
in medicine.45 46 State transitions might progress grad-
ually or abruptly. If a system balances around a critical 
threshold, small perturbations might induce an abrupt 
transition to a contrasting state. In oncology, phenomena 
like partial or complete radiologic responses during 
treatment or (hyper)progression after discontinuation 
of treatment suggest the presence of state transitions.47 48 
Based on these observations, a tipping point in cancer 
immunotherapy had been speculated on.49 Experimen-
tally, tipping points are most clearly represented by early 
preclinical work in the PD-1/programmed death ligand-1 
(PD-L1) axis. Consistent with our findings, dichotomous 
treatment responses arise in syngeneic DBA/2 mice 
inoculated with P815/PD-L1 cells.50 While genetically 
identical with similar tumor characteristics, anti-PD-L1 
antibodies prolong survival in only a subset of the mice, 
likely due to stochastic differences in immune responses 
and TCR repertoire. Additional in vivo data supporting 
the theory of tipping points in oncology is derived from 
studies on dynamic network biomarkers, showing its rele-
vance during the onset of metastasis in hepatocellular 
carcinoma51 and the development of treatment resistance 
in breast cancer.52 This study provides a potential mech-
anistic explanation for this phenomenon in immuno-
oncology and shows its implications on the induction 
of long-term survival in clinical practice and biomarker 
discovery. From a biomechanistic perspective, such state 
transitions in cancer immunotherapy arise due to funda-
mental differences in proliferation kinetics between 
tumors and the immune system. While tumor cell prolif-
eration is virtually unrestricted, immune cell proliferation 
is much more limited and tightly controlled. Our finding 
that tipping points affect not only natural disease courses 
but also treatment responses underlines the importance 
of these kinetics.

Tipping points within tumor-immune dynamics 
have important implications for biomarker discovery. 
Biomarkers are developed to predict prognosis and steer 
clinical decision-making. Disease outcomes in cancer 
patients are essentially determined by the interplay 
between two complex systems: the tumor and the immune 
system. Our model predicts that factors from both systems 

should be considered to improve the predictive power 
of biomarkers. However, in contrast with this seemingly 
straightforward prediction, current research mainly 
focuses on factors derived from one of the two complex 
systems. Expression of PD-L1 on tumor tissue illustrates 
this: while 45% of patients with PD-L1 positive tumors 
show objective responses to anti-PD(L)1 immunotherapy, 
15% of patients with PD-L1 negative tumors also show 
objective responses.53 Other explanations for this differ-
ence include heterogeneous intratumoral and interme-
tastases expression patterns, positivity-threshold selection, 
and differences in immunohistochemical staining proto-
cols. In that respect, tumor mutational burden (TMB) 
might prove to be a highly relevant biomarker. The muta-
tion rate is a tumor-intrinsic factor associated with the 
phenotypical aggressiveness of tumors.54 Simultaneously, 
a high mutational burden might induce a plethora of 
neoantigens, linking this tumor-intrinsic factor directly 
to adaptive immunity. Clinical observations of a stronger 
association between TMB and response rates to anti-PDL1 
immunotherapy compared with PD-L1 expression in 
patients with urothelial carcinoma support this hypoth-
esis.55 Our research thus reinforces common calls to inte-
grate multiple biomarkers for immunotherapy prediction 
outcomes56 57; at least, a combination of both immunolog-
ical and tumor-related parameters should be the basis of 
any biomarker discovery effort. The strongly non-linear 
dynamics resulting from the tipping point mean that a 
one-dimensional approach will likely be insufficient.

Our approach has to be interpreted in light of some 
limitations. Although the ‘coarse-grained’ nature of ODE 
models allows focusing on the major common under-
lying mechanisms in many cancers, it is also a potential 
pitfall. For example, metabolic processes such as hypoxia, 
immune-suppressive characteristics of the tumor micro-
environment such as the presence of FoxP3+ regulatory 
T cells or expression of transforming growth factor β, the 
presence of other relevant effector cells such as natural 
killer cells, and the availability of nutrients are only 
implicitly represented by our model in a single killing effi-
cacy parameter. This simplification also holds for treat-
ments. In this study, ICI was limited to its main mode of 
action: the augmentation of the T cell killing rate. While 
the ‘true’ mechanistic effects might be more widespread, 
sufficient data to correctly parameterize more complex 
models remains scarce. Furthermore, it should be empha-
sized that an ODE model contains limited spatial infor-
mation; while we distinguish between lymphatic tissue 
and the tumor microenvironment, all cells within the 
microenvironment are identical, and all processes affect 
cells in the same manner. Although we do not expect that 
explicit incorporation of these processes or translation of 
the model into a spatial variant alters our central finding 
of a tipping point, it could nevertheless be of interest to 
verify these hypotheses in future research using more 
complex, spatial agent-based models.

In conclusion, we used computational modeling to show 
that the clinical outcome of cancer patients is determined 
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by tipping points in tumor-immune dynamics. A tipping 
point influences not only treatment response but also 
the prognosis of patients and has major implications for 
future biomarker research.
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