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ABSTRACT
Background Predicting treatment response or survival of 
cancer patients remains challenging in immuno- oncology. 
Efforts to overcome these challenges focus, among others, 
on the discovery of new biomarkers. Despite advances in 
cellular and molecular approaches, only a limited number 
of candidate biomarkers eventually enter clinical practice.
Methods A computational modeling approach based on 
ordinary differential equations was used to simulate the 
fundamental mechanisms that dictate tumor- immune 
dynamics and to investigate its implications on responses 
to immune checkpoint inhibition (ICI) and patient survival. 
Using in silico biomarker discovery trials, we revealed 
fundamental principles that explain the diverging success 
rates of biomarker discovery programs.
Results Our model shows that a tipping point—a sharp 
state transition between immune control and immune 
evasion—induces a strongly non- linear relationship 
between patient survival and both immunological and 
tumor- related parameters. In patients close to the tipping 
point, ICI therapy may lead to long- lasting survival 
benefits, whereas patients far from the tipping point may 
fail to benefit from these potent treatments.
Conclusion These findings have two important 
implications for clinical oncology. First, the apparent 
conundrum that ICI induces substantial benefits in some 
patients yet completely fails in others could be, to a large 
extent, explained by the presence of a tipping point. 
Second, predictive biomarkers for immunotherapy should 
ideally combine both immunological and tumor- related 
markers, as a patient’s distance from the tipping point 
can typically not be reliably determined from solely one 
of these. The notion of a tipping point in cancer- immune 
dynamics helps to devise more accurate strategies to 
select appropriate treatments for patients with cancer.

INTRODUCTION
Immunotherapies are revolutionizing clinical 
care for cancer patients. The most widely used 
approach, immune checkpoint inhibition 
(ICI), can lead to long- term survival benefits 
in patients with advanced melanoma,1 lung 
cancer,2 and renal cell carcinoma.3 However, 

not all patients benefit from ICI therapy, and 
adequate predictions of treatment response 
have proven elusive so far.4 5 Efforts to improve 
these predictions focus mainly on discovering 
biomarkers in aberrant molecular pathways 
within the tumor microenvironment that 
drive immunosuppression and therapeutic 
resistance.6 7 These include genomic alter-
ations in oncogenic drivers, the absence of 
tumor- specific antigens, and the presence 
of immunosuppressive molecules or cells.8 9 
Despite substantial efforts, only a limited frac-
tion (according to one estimate, <1%10) of 
proposed cancer biomarkers find their way 
into the clinical practice. These apparent 
challenges in identifying biomarkers for 
immunotherapy and translating them into 
clinical practice could be a consequence of 
the inherent complexity of cancers and their 
interaction with the immune system.

To unravel the complexities of cancers and 
their treatments, researchers have adopted 
mathematical and computational approaches 
to complement laboratory research. A 
plethora of modeling approaches are avail-
able, ranging from simple one- variable 
equations to complex spatial agent- based 
simulation models. In silico modeling has 
contributed to fundamental insights into 
tumor growth and cancer progression,11–13 
tumor- immune control (eg, neoantigen 
prediction as targets for immunotherapy),14 
identification of tumor- associated genes,15 
verification of treatment- related safety 
concerns such as hematological toxicity,16 
prediction of treatment responses to chemo-
therapy and immunotherapy,17–19 investiga-
tion of drug- induced resistance,20 and timing 
of anti- cancer treatments.21–23 In the context 
of disease course dynamics, ordinary differ-
ential equation (ODE) models have proven 
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useful over the years. ODE models follow the principle 
that a model should be ‘as simple as possible but not 
simpler’. Based on plausible biological assumptions, they 
aim to reduce the complex reality of the modeled system 
to its bare essentials to enable the investigation of critical 
underlying dynamics. The field of quantitative systems 
pharmacology is built on this premise. Classically, experi-
mentally derived pharmacokinetic and pharmacodynamic 
parameters serve as input for ODE models to investigate 
the emergent properties of biological systems and to 
study its consequences in terms of clinical outcomes.24 As 
an illustrative example, Fassoni et al25 used ODE models 
to predict that dose de- escalation of tyrosine kinase 
inhibitors targeting the oncogenic protein BCR- ABL1 in 
patients with chronic myeloid leukemia (chronic phase) 
does not lead to worse long- term outcomes. The recent 
results of the DESTINY trial support this prediction.26

In this study, we investigate the consequences of 
tumor- immune dynamics on patients’ responses to ICI 
and survival in an ODE model. Our model reveals a 
tipping point within tumor- immune dynamics—a critical 
threshold for survival culminating in an all- or- nothing 
principle—that has profound implications for a patient’s 
disease course and outcome. We show how the presence 
of a tipping point alone robustly induces heterogeneous 
immunotherapy treatment outcomes, and how this 
complicates the search for both prognostic and predic-
tive biomarkers.

METHODS
Capturing core mechanisms of tumor development in a 
mathematical model
We constructed a mathematical model consisting of a 
system of ODEs to capture essential interactions between 
cancer cells and lymphocytes during tumor formation. 
Our model represents tumorigenesis in patients, starting 
with the malignant transformation of a single cell.

The model consists of five equations that describe 
essential processes in the tumor microenvironment and 
the lymphatic organs (figure 1A). In the tumor micro-
environment, tumor growth (Equation 1a) and T cell- 
mediated killing of tumor cells (Equation 1b) determine 
the evolution of the tumor burden (the numbers of the 
equations correspond to those used in figure 1A). Tumor- 
infiltrating lymphocytes migrate from the lymph nodes 
to the microenvironment (equation 2). Before migra-
tion, T cells expand clonally in the lymph nodes’ T cell 
zones (equation 3) after conversion of naive T cells into 
antigen- specific effector T cells (equation 4). Below, we 
provide in- depth descriptions of each model equation.

We modeled tumor growth—that is, the formation of 
tumor cells during carcinogenesis—with the generalized 
exponential model proposed by Mendelsohn, in which 
ρ represents a tumor growth rate constant.27 Essentially, 
this means that at each time interval, a fraction of tumor 
cells divide. The dividing fraction decreases as the tumor 
burden increases since substantial parts of a larger tumor 

mass, such as the necrotic core, are no longer able to 
proliferate. Since the tumor burden (T) is determined by 
the combination of tumor growth and tumor cell killing, 
the first part of equation 1—describing the tumor burden 
over time – will be:

 
dT
dt = ρT

4
5  (1a)

where  
dT
dt = ρT

4
5 = ρ

T1/5 T = f
(
T
)

T  , resulting in 

 f
(
T
)

= ρ
T1/5   as the fraction of dividing cells per time 

interval, which scales inversely with the tumor burden T.
The killing rate expression is derived from the conven-

tional Michaelis- Menten kinetics for enzyme- substrate 
interaction28 29:

 
E + S

k1⇌
k2

ES
ξ→ E + P

  

in which E, S, and P are the enzyme, substrate, and 
product, respectively. k1, k2, and ξ represent the enzyme- 
substrate complex formation rate, the complex disso-
ciation rate, and the catalytic rate. Given that complex 
formation and dissociation occur at a rate that is at least an 
order of magnitude faster than tumor growth, Borghans 
et al28 argued that the Michaelis- Menten kinetics could be 
simplified using a quasi- steady- state assumption. Simpli-
fication using a Padé approximation and subsequent 
rearrangement leads to a conventional Double Satura-
tion (DS) model that describes effector T cell- mediated 
killing28 29:

 
dT
dt = − ξI T

1+ I
hI

+ T
hT   

(1b)

in which I is the number of immune cells in the tumor 
microenvironment, ξ is the T cell killing rate, hI is the 
saturation constant of the effector T cells, and hT is the 
tumor cells’ saturation constant. Here, we consider T 
cells to follow a ‘monogamous killing’ strategy, meaning 
that one T cell interacts with one tumor cell at a time.28 29

Combining T cell- mediated tumor cell killing (Equa-
tion 1b) and tumor growth (Equation 1a), we obtain the 
complete differential equation that describes the tumor 
burden over time:

 
dT
dt = ρT

4
5 − ξI T

1+ I
hI

+ T
hT   

(1)

Subsequently, the immunogenicity of the tumor triggers 
an anti- tumor immune response. Lymph node- resident T 
cells (S) migrate at rate ms from the lymph nodes to the 
tumor microenvironment. The number of intratumoral 
T cells over time is determined by migration and death. 
Therefore, by combining a migration term with a death 
term at rate δ, we obtain the following equation for the 
evolution of intratumoral T cells over time:

 
dI
dt = msS − δI   (2)

Intratumoral T cells migrate from the lymph nodes 
where they are produced. This process starts with 
converting lymph node- resident naive T cells (ie, not acti-
vated antigen- specific; N) into antigen- specific effector T 
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cells (S) at priming rate α. The priming rate α is scaled 
by the tumor size (ie, a smaller tumor will cause less T 
cell priming than a larger tumor) with a scaling term 

 

(
T

107+T

)
 
, meaning that the priming rate is at half of its 

maximum rate and starts to saturate in tumors larger than 
107 cells (ie, a sphere with a radius of 0.29 cm). Effector T 
cells expand clonally at proliferation rate ps and migrate 
into the tumor microenvironment. Combining these 
processes, we arrive at the final two differential equations 
that describe the evolution of naïve and primed T cells in 
the lymph nodes:

 
dS
dt = α

(
T

107+T

)
N + psS − msS   (3)

 
dN
dt = − α

(
T

107+T

)
N

  (4)

The simulations used the following initial conditions: 
T(0)=1, I(0)=0, S(0)=0, and N(0)=106.

Simulation parameters
The simulation parameters are listed in table 1.

The parameters were chosen to mimic realistic in vivo 
intercellular behavior. The rationale for the choice of 
each parameter is explained below.

In a human adult, an estimated repertoire of approxi-
mately 1010–1011 naive CD8+ T cells is present.30 31 Naive 
CD8+ T cells need to be primed to become activated 
effector T cells. The CD8+ T cell precursor frequency—
the frequency at which any given peptide- MHC complex 
is recognized by naive antigen- specific CD8+ T cells—is 
on the order of 1: 100 000.30 Priming should be limited 
primarily to naive CD8+ T cells in one of the tumor 
areas draining lymph nodes. A human body contains 
±600 lymph nodes. At a steady state, roughly 40% of all 
lymphocytes reside in lymph nodes, meaning that 40 000 
naive T cells (≈70 naive CD8+ T cells per lymph node) can 
be primed.32 33 We assume that priming occurs primarily 

Figure 1 An in silico model of the tumor microenvironment generates realistic and modifiable disease courses of cancer 
patients. (A) The ODE model describes fundamental processes in the tumor microenvironment. Parameters: α=naive T cell 
priming rate, δ=effector T cell death rate, ξ=effector T cell killing rate, ρ=tumor growth rate, ps=effector T cell proliferation rate, 
and ms=effector T cell migration rate. (B) An effective anti- tumor immune response can eradicate tumor cells before the clinical 
manifestation of a tumor. (C) After an initial state in which the tumor outpaces the immune system, the immune system can 
suppress tumor growth and controls it in a subclinical state. (D) The natural course of disease for a clinically apparent tumor. An 
initial malignant transformation is followed by tumor growth until clinical diagnosis. Despite the activation of adaptive immunity, 
the tumor prevails. A stage of progressive disease follows, ultimately culminating in cancer- related death. The horizontal gray 
lines indicate (from bottom to top): the tumor burden at diagnosis and the tumor burden at death, respectively. Simulation 
parameters are added in online supplemental table 1. ODE, ordinary differential equation.
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in the tumor- draining lymph node station (per station 
harboring around 20 lymph nodes34). Then, 1400 T cells 
would be available for priming at any given time, and 
this pool would be refreshed approximately once per day 
by T cell recirculation. Considering that dendritic cells 
might present multiple epitopes and antigens, and that 
T cell priming in vivo might occur suboptimally, we set a 
priming rate of at most 2500 cells per day. The order of 
magnitude of these priming rates corresponds to priming 
rates found in chronic infectious diseases.35 Due to evasive 
mechanisms, antitumor immunity is a more dormant 
process than an immune response to infections.36 There-
fore, we scaled the priming rate with tumor size, which 
translates into a maximum production of 106 antigen- 
specific CD8+ T cells per day via clonal expansion. Next, 
we assume that all antigen- specific effector T cells migrate 
into the tumor microenvironment to interact with tumor 
cells (ie, complex formation).

Complex formation and dissociation rates are described 
by the ‘Michaelis constant’, which we derived from the 
literature.29 The Michaelis constant describes the ratio 
between complex formation and dissociation.

The killing rate of effector T cells has been investi-
gated mainly in the context of infectious disease. In their 
review, Halle et al37 discuss discrepancies between in vitro 
and in vivo killing rates of effector T cells. Depending 
on the context, killing rates of effector T cells vary from 
1 target per 5 min to 0–10 targets per day,37 but tumor 
cells are considered difficult to kill. Extensive variation 
in experimental in vivo per capita killing rates (ie, the 
number of cells killed by an effector T cell per unit of 
time) complicates the selection of a default fixed killing 
parameter. Therefore, we investigated T cell dynamics 
over a wide range of killing rates as described using the 
monogamous killing regime in a DS model by Gadham-
setty et al.29 The DS model ensures that the killing rate 
saturates with respect to the tumor cell and the effector 
cell densities. Consequently, our model’s maximum per 
capita killing rate is 2.5: one T cell can kill at most 2.5 
tumor cells per day, provided there are abundant target 
cells available, and there is no competition with other 
T cells. The default tumor growth rate is 1 cell/day, but 
we varied this parameter extensively in our simulations. 

Taken together, our default parameter values led to simu-
lations of disease courses with realistic survival times in 
patients with malignancies and matched the order of 
magnitude of tumor growth rates as reported by others.38

Time-varying parameters
For the simulations involving dynamic patient trajecto-
ries, we varied the tumor growth rate ρ and the T cell 
killing rate ξ in a stochastic manner over time. Briefly, we 
set one value per month of simulated time by multiplying 
the baseline parameter value with a random number 
drawn from a normal distribution with a fixed SD. The 
values used for the SD are given in online supplemental 
tables 4 and 5 (‘stochasticity’). From these monthly refer-
ence values, we generated time- dependent functions 
using cubic B- spline interpolation. For details, see our 
simulation code (link given below).

Patient simulations
We simulated tumor development in patients up to a 
maximum of 5 years. Note that depending on emergent 
tumor- immune dynamics, simulated patients may not 
reach the overall survival endpoint during this interval. 
Each time step in the simulation corresponded to 1 day. 
At baseline, one tumor cell and a pool of 106 naïve 
tumor- specific T cells are present in a patient. Activated 
effector T cells are absent. We defined the time of diag-
nosis as the time at which the tumor exceeded 65×108 
cells and became clinically apparent. This cut- off corre-
sponds to the assumption that a tumor with a volume of 
1 cm3 contains 108 tumor cells39 and that several primary 
tumors (eg, lung cancer, colon carcinoma, and renal cell 
carcinoma) are diagnosed as spherical structures with a 
median diameter of approximately 5 cm.40–42 The ‘lethal’ 
tumor burden of patients in these simulations is esti-
mated at 1012 cells, corresponding to a total tumor mass 
of approximately 22×22×22 cm.

Validation cohort
Model findings related to biomarker discovery programs 
were validated in a cohort of 58 patients with metastatic 
cutaneous melanoma that were treated with dendritic cell 
vaccination. Full details of this cohort, including baseline 

Table 1 Simulation parameters in the ODE model

Symbol Parameter (dimension) Default value (range*)

ρ Tumor growth rate (cells/day) 1 (0–7)

ξ Relative killing rate (cells/day) 0.001 (0–0.05)

h Michaelis constant (cells) 571

δ Death rate of immune cells (cells/day) 0.01958

α Conversion rate of naive T cells into specific T cells (cells/day) 0.0025

pS Total production rate of effector T cells from lymph nodes (cells/day) 1

mS Migration rate from lymph node to tumor microenvironment (cells/day) 1

*If not fixed.
ODE, ordinary differential equation.

 on A
pril 9, 2024 by guest. P

rotected by copyright.
http://jitc.bm

j.com
/

J Im
m

unother C
ancer: first published as 10.1136/jitc-2020-002032 on 31 M

ay 2021. D
ow

nloaded from
 

https://dx.doi.org/10.1136/jitc-2020-002032
https://dx.doi.org/10.1136/jitc-2020-002032
http://jitc.bmj.com/


5Creemers JHA, et al. J Immunother Cancer 2021;9:e002032. doi:10.1136/jitc-2020-002032

Open access

characteristics, were published previously.43 None of the 
patients received prior or subsequent immunotherapy. 
The serum lactate dehydrogenase levels at baseline (ie, 
before therapy) were analyzed as a surrogate marker for 
tumor growth. The ratio of intratumoral versus peritu-
moral T cell densities, obtained by immunohistochemical 
staining of the primary tumor, was selected as a surrogate 
marker for the T cell killing rate. Overall survival data 
were available for all patients.

Model implementation
We implemented our ODE model in C++. The Boost 
library ‘odeint’ was used to solve the system of ODEs.44 
The code is available at GitHub: https:// github. com/ 
jeroencreemers/ tipping- point- cancer- immune- dynamics. 
Analyses and visualizations were performed in R.

RESULTS
Modeling tumor-immune dynamics yields realistic disease 
trajectories
To investigate the consequences of tumor- immune 
dynamics on the survival kinetics of patients, we used a 
computational modeling approach. We aimed to capture 
the interplay between tumor- and immune cells in the 
tumor microenvironment and simulate tumor growth 
in patients (see the Methods section). Our ODE model 
captured essential processes in antitumor immunity: 
priming of naive antigen- specific CD8+ T cells, clonal 
expansion of effector T cells in lymph nodes, tumor 
growth leading to effector T cell attraction into the tumor 
microenvironment, and formation of tumor- immune cell 
complexes to enable tumor cell killing (figure 1A).

We simulated tumor development from malignant 
transformation of a single cell, via clinical detection 
of a tumor, to advanced disease and possibly death. 
Depending on the tumor growth and the cytotoxic 
capacity of effector T cells, the ‘time to clinical mani-
festation’ and overall survival varied. Despite this varia-
tion, our simulations consistently showed three possible 
outcomes: (1) effector T cells inhibited tumor cell 
outgrowth and eradicated the tumor before clinical mani-
festation (figure 1B); (2) effector T cells were initially 
unable to inhibit tumor cell outgrowth but caught up and 
suppressed tumor growth to a balanced subclinical state 
(figure 1C); or (3) exponential tumor growth outpaced 
the immune system’s control and gave rise to a clinically 
detectable tumor (figure 1D). These three scenarios only 
led to two clinically different outcomes in patients: either 
a tumor became clinically evident, or the immune system 
could suppress or eradicate a tumor at an early stage 
(ie, before the tumor could reach a clinically detectable 
size). A balanced equilibrium state, in which the immune 
system keeps a clinically evident tumor under persistent 
control, does not exist in this deterministic version of our 
model.

Patient survival depends on a tipping point in tumor-immune 
dynamics
To better characterize these dichotomous survival kinetics, 
we examined how tumor- immune dynamics influenced 
patient survival by varying the tumor growth rate and the 
T cell killing rate over a broad range of possible values.

First, we focused solely on the tumor- component by 
varying the tumor growth rate. An increase in tumor 
growth did not gradually shorten overall survival in 
patients (figure 2A). On the contrary, a critical threshold 
was present. Once the threshold was exceeded, the kinetics 
‘flipped’ from a state of immune control (figure 2A, inset 
1) to a state in which the tumor could evade immune 
control (figure 2A, inset 2).

Second, we investigated the influence of the T cell killing 
rate on overall survival. As for the death rate, a gradual 
increase in the cytotoxic capacity of effector T cells did 
not induce a gradual change in survival times. Instead, a 
sharp state transition that differentiated short from long 
survival was observed again (figure 2B). This coincided 
with the phenotypes ‘immune evasion’ (figure 2B, inset 
1) and ‘immune control’ (figure 2B, inset 2).

To visualize this sudden state transition or ‘tipping 
point’ in tumor- immune dynamics as a function of 
both tumor proliferation and cytotoxic killing at the 
same time, we visualized the joint influence of the 
tumor growth rate and T cell killing rate on survival in 
a heatmap (figure 2C). This ‘phase diagram’ shows that 
the tipping point is not only present for specific param-
eter values but is a fundamental property in our model. 
By contrast, the state of subclinical tumor control was not 
universally present around the tipping point (figure 2C, 
inset) but manifested itself only in a narrow range of 
parameters. Within both the ‘cure’ and ‘control’ domain 
(figure 2, inset), the immune system prevented tumors 
from reaching a detectable size, precluding the clinical 
classification as ‘patient’. The difference between individ-
uals in the ‘cure’ and ‘control’ domains was that all tumor 
cells were eradicated in the former, while in the latter, 
the immune system kept the tumor in an undetectable 
subclinical state (ie, a tumor size of around 103 tumor 
cells; figure 1B,C).

Next, we expanded these analyses to characterize the 
tipping point in different tumor types. A fundamental 
distinction between tumors is the rate at which they 
induce T cell priming, for instance, through tumor- 
specific immunogenicity or by specific characteristics of 
the immunosuppressive microenvironment. To this end, 
we simulated four tumor types: a tumor without T cell 
priming and three tumors in which T cell priming was 
varied from low to high. Without T cell priming, survival 
was only determined by the tumor growth rate—logically, 
no tipping point exists in the absence of T cells (online 
supplemental figure 1A). With T cell priming, tipping 
points became apparent. The location of the tipping 
point was affected by the priming rate. A higher priming 
rate facilitated improved tumor eradication through an 
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increased influx of cytotoxic T cells into the tumor micro-
environment (online supplemental figure 1B–D).

In general, the presence of a tipping point indicates 
that small perturbations in either tumor growth rate or T 
cell killing rate in the vicinity of a tipping point may result 
in substantial overall survival differences in patients. In 
contrast, much larger perturbations far away from the 
tipping point would have far less effect.

ICI induce a survival benefit by shifting patients over a tipping 
point
So far, we have described tumor- immune interactions 
during the natural course of malignant disease. In a 
clinical setting, however, therapeutic interventions are 
available to steer disease courses. Dependent on the 
treatment of choice, a specific effect is exerted on the 
tumor microenvironment. Treatment effects vary from 
constraining the proliferative capacity of tumor cells (eg, 
chemotherapy or targeted therapy) to increasing the T 
cell pool (eg, CAR T cells) or expanding the proliferative 

capacity of T cells (eg, cancer vaccines; figure 3A). Given 
the unparalleled responses of advanced malignancies 
to immunotherapy, we focused on the consequences of 
a tipping point for responses to ICI, but these findings 
could be extended to other therapies as well. In this study, 
we limited the treatment effect of ICI to their primary 
mode of action: the augmentation of the T cell killing 
rate (figure 3A).

In the presence of a tipping point, ICI could induce 
a long- term survival benefit under two conditions: (1) 
the effect of treatment needs to be potent enough to 
shift a patient over a tipping point (figure 3B), and (2) 
the treatment effect needs to be sustained long enough 
for a patient to benefit from the treatment (figure 3C). 
The treatment effect was defined as the multiplication 
factor of the T cell killing rate. When both criteria were 
satisfied, ICI were able to induce a long- term survival 
benefit. However, if the treatment effect (anti- PD1 
effect <12.6) or duration (less than ±5 months) proved 

Figure 2 A tipping point in the tumor- immune interaction determines a patient’s outcome. (A) A gradual increase in tumor 
growth reveals a tipping point, where long- term survival (immune control; inset 1) abruptly changes to short- term survival 
(immune evasion; inset 2). (B) A similar analysis reveals a tipping point along the immune axis, again differentiating short- term 
survival (immune evasion; inset 1) from long- term control (immune control; inset 2). (C) The tipping point is present across the 
entire range of parameters examined. Cure and progressive disease are the dominant states, whereas subclinical tumor control 
only occurs within a limited parameter range (inset). Simulation parameters are shown in online supplemental table 2. OS, 
overall survival.
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inadequate, any survival benefit was only temporary, 
and inevitable tumor progression would ultimately limit 
overall survival (figure 3B,C; insets). These survival 
kinetics depend not solely on therapeutic features of 
ICI but rather on the interplay between patient and ICI 
characteristics. To illustrate this, we simulated twenty 
patients with identical immune systems (ie, identical T 
cell killing rates). In the absence of ICI therapy, varia-
tion in the tumor growth rate—that is, variation in the 
distance to a tipping point—led to a limited variation in 
survival (figure 3D; gray bars). When these same patients 

were treated with ICI, a survival benefit is induced in all 
patients. However, the extent of this benefit differs and 
depends on the distance to a tipping point. Following 
clinical observations, long- term survival is only induced 
in the subset of patients close to a tipping point 
(figure 3D; green bars). Similar findings were obtained 
in a population of patients with identical tumors but 
different immune systems. Without treatment, hardly 
any survival variation is present (figure 3E; gray bars). 
Again, treatment with ICI induced dichotomous clinical 
outcomes: a small survival benefit in most patients, with 

Figure 3 Tipping points induce dichotomous clinical outcomes in heterogeneous patient populations. (A) Treatments target 
processes or cell populations in the tumor microenvironment. (B, C) Two criteria need to be met to induce long- term survival: 
(B) ICI need to augment T cell killing sufficiently and (C) the treatment effect needs to be retained for a prolonged time. An 
inadequate treatment effect or limited treatment duration led at maximum to a temporary survival benefit. (D, E) In patient 
populations with variation in only (D) the tumor (ie, growth rate), or (E) the immune system (ie, T cell killing rate), the distance 
to a tipping point determines the clinical benefit. Without treatment, survival was limited (gray bars). In contrast, ICI induced 
long- term survival solely in patients close to a tipping point (green bars). See also online supplemental table 3. ICI, immune 
checkpoint inhibition; OS, overall survival.
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long- term survival in a subset (figure 3E; green bars). 
Hence, the mere presence of a tipping point yields 
heterogeneity in treatment outcomes.

Tipping points determine patient outcomes in dynamic patient 
trajectories
Thus far, our simulations considered tipping points gener-
ated in patients with fixed characteristics. However, disease 
courses in patients are certainly not fixed and are, to a 
certain extent, subject to (possibly random) variation. 
We hypothesized that interpatient variability in clinical 
outcomes could be partially attributable to this dynamic 
behavior of cancers and the interaction with the immune 
system. Such variation might reflect biological processes 
(eg, accumulating mutations, the expression of check-
point molecules, and the availability of nutrients) that 
alter antitumor immunity and promote or hamper tumor 
development. We reasoned that the subsequent dynamics 
could drive patients towards and ultimately over a tipping 
point—or move patients away from it, which would limit the 
survival benefit of these treatments. To verify this hypoth-
esis, we simulated the effect of dynamically evolving tumors 
(figure 4A) or immune systems (figure 4B) in identical 
patients compared with a static reference patient. Specifi-
cally, we varied the tumor growth rate and the T cell killing 
rate randomly over time (parameter values are included in 
online supplemental table 4). On reaching a diagnosable 

tumor volume, all patients in these examples were treated 
with ICI. As expected, stochastic dynamics prompted 
survival differences and induced a survival benefit in a 
subset of patients. In a heterogeneous patient population, 
this led to an interesting finding: the initial distance to a 
tipping point, along with the dynamics itself, determined 
the clinical outcome of patients treated with ICI (figure 4C, 
online supplemental figure 2). At population level, this 
led to a distinction between three subsets of patients: (1) 
patients far away from a tipping point with an unmodifi-
able bad prognosis (non- responders), (2) patients close to 
a tipping point with a favorable prognosis (responders), 
and most importantly, (3) patients in between these 
groups (potential responders). In the last subset, tumor 
dynamics ultimately determined the treatment response, 
and thereby the clinical outcome (figure 4C; gray box). A 
clinically important ramification of dynamic trajectories is 
that even if the subset to which a patient belongs is known 
at baseline, dynamics could alter the distance to a tipping 
point and, thereby, the prognosis of a patient. Therefore, 
it might be impossible to predict the prognosis solely 
based on characteristics measured at diagnosis. Dynamic 
trajectories can significantly diversify patient outcomes, 
meaning that continuous variation in the tumor growth 
rate (figure 4D) or T cell killing rate (figure 4E) leads to 
an entire spectrum of patient outcomes.

Figure 4 Survival outcomes are strongly affected by evolving patient dynamics. (A, B) Examples of dynamic disease courses 
in patients with identical tumors and immune systems at baseline, respectively. (A) Evolving tumors (ie, random variation in 
tumor growth rate over time) and (B) continuous variation in the potency of the immune system (ie, killing rate) lead to divergent 
survival outcomes. The gray dotted lines indicate the baseline values for the growth rate and killing rate, respectively. (C) 
Dynamic trajectories in a heterogeneous patient population can move patients towards or away from a tipping point. The gray 
box indicates patients in which dynamic trajectories (blue) strongly alter survival outcomes compared to static trajectories (red). 
See also online supplemental figure 2. In dynamic trajectories, (D) baseline tumor growth and (E) baseline T cell killing rates 
cannot accurately predict overall survival (OS). All patients in these examples are treated with ICI. The red and black dotted lines 
indicate the 25% and 75% quantiles, respectively. See also online supplemental table 4.
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Implications of tipping points for biomarker discovery studies
Biomarker discovery studies aim to improve the prediction 
of patient survival on treatment. We observed that tipping 
points are crucial in shaping survival kinetics. Therefore, 
accurate survival predictions would require the consider-
ation of tipping points. Ideally, a prognostic biomarker 
(or biomarker panel) would consistently distinguish long- 
term survivors from their counterparts. Since the non- 
linear survival dynamics following a tipping point weaken 
the correlation between a single biomarker and survival, 
the question is: how can we screen for biomarkers in a 
more efficient manner that takes this tipping point into 
account?

At first, we approached this question with an in silico 
biomarker discovery study. We measured the value of two 
potential biomarkers at baseline in simulated patients 
(n=100) that were subsequently treated with ICI (cohort 
characteristics are specified in online supplemental table 
5). We simplified the cohort by fixing the tumor and 
immune characteristics of these patients over time and 
assumed to have access to an entirely accurate biomarker 
(ie, no measurement error; figure 5A). Within this 
cohort, we predicted the prognosis of patients based on 
either the tumor or immune marker (the first and second 
columns of figure 5A, respectively). As is common in 
practice (though from a statistical point of view far from 
ideal), we dichotomized the biomarker using its median 
as a cut- off. Although survival differentiation based on 
these biomarkers alone was partially possible, it remained 
far from optimal. However, when we constructed a 
biomarker panel including both biomarkers, it highly 
accurately discriminated short- term from long- term survi-
vors (third column of figure 5A). Note that despite vari-
ability in time from diagnosis, the initial plateau in the 
survival curves was caused by the fact that all tumors were 
diagnosed with identical sizes and immediately treated.

In clinical practice, the assumption of a ‘fixed’ patient 
trajectory does not hold. Therefore, we simulated this 
cohort again with dynamic trajectories. Due to the 
dynamics, a subgroup of patients did not develop clinical 
tumors and was excluded from the analysis. The predic-
tion of a patient’s prognosis with a single biomarker, either 
from the tumor or the immune system, in a dynamic 
cohort became increasingly challenging (the first and 
second columns of figure 5B). The combination of both 
markers in a biomarker panel increased the predictive 
capacity slightly, enabling the prediction of prognosis to 
some extent. However, in line with the notion of person-
alized medicine, the accurate and individualized predic-
tion of prognosis based on baseline characteristics was 
not feasible in a significant subgroup of patients due to 
dynamic tumor- immune interactions (third column of 
figure 5B).

These in silico experiments suggest that biomarker 
discovery efforts benefit from considering tumor and 
immune markers in concert rather than alone. To test 
this hypothesis, we retrospectively analyzed clinical data 
derived from previous trials in patients with metastatic 

melanoma (n=58; see baseline characteristics in online 
supplemental table 6).43 We assessed whether a combina-
tion of two biomarkers would provide more information 
on a patient’s survival than either marker alone. Baseline 
lactate dehydrogenase (LDH) was selected as a surrogate 
marker for tumor growth, and the ratio between immu-
nohistochemically determined intratumoral versus peri-
tumoral (I/P) immune cells on the primary tumor was 
selected as an immune marker. We then used two different 
methods to measure the amount of information these 
markers provide on patient survival. First, we applied 
linear discriminant analysis to determine marker cut- off 
values that distinguish ‘short survivors’ (<9 months) from 
‘long survivors’ (>9 months, corresponding to the median 
survival in the cohort). A cut- off based on the tumor 

Figure 5 Non- linear tumor- immune dynamics complicate 
biomarker discovery. (A) An in silico biomarker discovery 
study in a ‘fixed’ patient cohort: while a single biomarker—
either a tumor or an immune marker—can predict survival to 
some extent (the first and second columns), information from 
both markers in a biomarker panel enhances the predictive 
capacity greatly (third column). (B) Dynamic disease 
trajectories challenge survival prediction with ‘baseline’ 
biomarkers. In dynamic disease courses, the predictive value 
of single ‘baseline’ biomarkers is limited (the first and second 
columns; compare to (A). A biomarker panel improves 
survival predictions in this cohort (the third column) but is still 
defied by evolving dynamics. See also online supplemental 
table 5. OS, overall survival.  on A
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marker LDH alone correctly classifies 71% of patients 
(figure 6A), which increased to 78% when using the I/P 
ratio as an immune marker instead. A combination of 
both markers achieves 86% accuracy, with the discrimi-
nation line following a roughly diagonal slope akin to the 
tipping point in our ‘in silico’ cohort (figure 2). Second, 
we compared Cox proportional hazard models based 
on LDH alone and I/P ratio alone to a model including 
both markers. Both LDH (likelihood ratio test: p=4×10−7) 
and I/P ratio (p=3.6×10−7) explained survival better than 
chance on their own, but a bivariable model (p=9.3×10−10; 
online supplemental table 7) provided the best fit to the 
data as measured by a Bayesian Information Criterion, 
which was lower by 11.6 compared with the LDH- only 
model and by 20.7 compared with the I/P ratio- only 
model. The Kaplan- Meier plots shown in figure 6B illus-
trate the performance of each model by comparing the 
patients with the highest 50% estimated relative hazard 
to the lowest 50%. These results support our in silico- 
generated hypothesis that a combination of tumor and 
immune markers form a better basis for patient stratifica-
tion than either marker on its own.

Two important findings are derived from these obser-
vations: First, due to the non- linear tumor- immune 
dynamics with respect to survival, it can be complicated for 

a single biomarker to predict a patients’ prognosis accu-
rately. Since survival kinetics emerge from the interplay 
between a cancer and the immune system, biomarkers 
from both systems need to be incorporated simultane-
ously into a biomarker panel to improve the predictive 
value. Second, biomarker measurements at baseline are 
merely a situational snapshot of the disease conditions 
at a specific point in time. Depending on the magnitude 
of the dynamics, it might become challenging or even 
impossible to predict the prognosis of patients from these 
biomarkers correctly.

DISCUSSION
This study investigated how tumor- immune dynamics 
relate to ICI- induced treatment responses and survival 
kinetics of patients. We predict that a tipping point is 
present in the tumor- immune interaction. This finding 
implies that underneath the intricate interplay between 
a developing malignancy and the immune system, two 
contrasting disease states determine disease outcome: a 
state where the immune system controls tumor outgrowth 
and a state in which a tumor escapes immune defense. 
A stable ‘steady state’ in which tumor growth and the 
immune response perfectly balance each other for 

Figure 6 A composite biomarker consisting of a tumor and an immune component outperforms single markers in a 
retrospective analysis of metastatic melanoma patients. (A) A linear classifier based on LDH level at baseline, a surrogate marker 
for tumor growth, classified 71% of all patients correctly as short survivors (<9 months) or long survivors (>9 months). With 
an accuracy of 78%, the I/P ratio—an immune marker—performs better in this cohort. A linear combination of both markers 
leads to an even better classification (86% accuracy) than either one alone. (B) A Cox proportional hazard model based on both 
markers fits the data better than models based on either marker as measured by the Bayesian Information Criterion (BIC) (the 
lower, the better, and differences above 10 are considered strongly favoring one model over another). I/P, intratumoral versus 
peritumoral; LDH, lactate dehydrogenase; OS, overall survival.
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extended periods seems only plausible in a subclinical 
setting. We show that treatment with ICI can induce a 
survival benefit by shifting a patient over a tipping point, 
thereby tipping the balance in tumor- immune dynamics 
in favor of survival. In line with clinical observations of 
interpatient variability in disease courses, we found that 
dynamics in patient trajectories pose major challenges 
for treatment response prediction. Moreover, we showed 
how a tipping point in dynamic patient trajectories defies 
simple strategies for outcome prediction in biomarker 
discovery studies. In particular, when facing highly 
dynamic disease courses, adaptive treatment strategies 
based on continuous monitoring might be more prom-
ising than simple patient stratification at baseline.

Tipping points are well known in complex systems such 
as financial markets and ecosystems but are also present 
in medicine.45 46 State transitions might progress grad-
ually or abruptly. If a system balances around a critical 
threshold, small perturbations might induce an abrupt 
transition to a contrasting state. In oncology, phenomena 
like partial or complete radiologic responses during 
treatment or (hyper)progression after discontinuation 
of treatment suggest the presence of state transitions.47 48 
Based on these observations, a tipping point in cancer 
immunotherapy had been speculated on.49 Experimen-
tally, tipping points are most clearly represented by early 
preclinical work in the PD-1/programmed death ligand-1 
(PD- L1) axis. Consistent with our findings, dichotomous 
treatment responses arise in syngeneic DBA/2 mice 
inoculated with P815/PD- L1 cells.50 While genetically 
identical with similar tumor characteristics, anti- PD- L1 
antibodies prolong survival in only a subset of the mice, 
likely due to stochastic differences in immune responses 
and TCR repertoire. Additional in vivo data supporting 
the theory of tipping points in oncology is derived from 
studies on dynamic network biomarkers, showing its rele-
vance during the onset of metastasis in hepatocellular 
carcinoma51 and the development of treatment resistance 
in breast cancer.52 This study provides a potential mech-
anistic explanation for this phenomenon in immuno- 
oncology and shows its implications on the induction 
of long- term survival in clinical practice and biomarker 
discovery. From a biomechanistic perspective, such state 
transitions in cancer immunotherapy arise due to funda-
mental differences in proliferation kinetics between 
tumors and the immune system. While tumor cell prolif-
eration is virtually unrestricted, immune cell proliferation 
is much more limited and tightly controlled. Our finding 
that tipping points affect not only natural disease courses 
but also treatment responses underlines the importance 
of these kinetics.

Tipping points within tumor- immune dynamics 
have important implications for biomarker discovery. 
Biomarkers are developed to predict prognosis and steer 
clinical decision- making. Disease outcomes in cancer 
patients are essentially determined by the interplay 
between two complex systems: the tumor and the immune 
system. Our model predicts that factors from both systems 

should be considered to improve the predictive power 
of biomarkers. However, in contrast with this seemingly 
straightforward prediction, current research mainly 
focuses on factors derived from one of the two complex 
systems. Expression of PD- L1 on tumor tissue illustrates 
this: while 45% of patients with PD- L1 positive tumors 
show objective responses to anti- PD(L)1 immunotherapy, 
15% of patients with PD- L1 negative tumors also show 
objective responses.53 Other explanations for this differ-
ence include heterogeneous intratumoral and interme-
tastases expression patterns, positivity- threshold selection, 
and differences in immunohistochemical staining proto-
cols. In that respect, tumor mutational burden (TMB) 
might prove to be a highly relevant biomarker. The muta-
tion rate is a tumor- intrinsic factor associated with the 
phenotypical aggressiveness of tumors.54 Simultaneously, 
a high mutational burden might induce a plethora of 
neoantigens, linking this tumor- intrinsic factor directly 
to adaptive immunity. Clinical observations of a stronger 
association between TMB and response rates to anti- PDL1 
immunotherapy compared with PD- L1 expression in 
patients with urothelial carcinoma support this hypoth-
esis.55 Our research thus reinforces common calls to inte-
grate multiple biomarkers for immunotherapy prediction 
outcomes56 57; at least, a combination of both immunolog-
ical and tumor- related parameters should be the basis of 
any biomarker discovery effort. The strongly non- linear 
dynamics resulting from the tipping point mean that a 
one- dimensional approach will likely be insufficient.

Our approach has to be interpreted in light of some 
limitations. Although the ‘coarse- grained’ nature of ODE 
models allows focusing on the major common under-
lying mechanisms in many cancers, it is also a potential 
pitfall. For example, metabolic processes such as hypoxia, 
immune- suppressive characteristics of the tumor micro-
environment such as the presence of FoxP3+ regulatory 
T cells or expression of transforming growth factor β, the 
presence of other relevant effector cells such as natural 
killer cells, and the availability of nutrients are only 
implicitly represented by our model in a single killing effi-
cacy parameter. This simplification also holds for treat-
ments. In this study, ICI was limited to its main mode of 
action: the augmentation of the T cell killing rate. While 
the ‘true’ mechanistic effects might be more widespread, 
sufficient data to correctly parameterize more complex 
models remains scarce. Furthermore, it should be empha-
sized that an ODE model contains limited spatial infor-
mation; while we distinguish between lymphatic tissue 
and the tumor microenvironment, all cells within the 
microenvironment are identical, and all processes affect 
cells in the same manner. Although we do not expect that 
explicit incorporation of these processes or translation of 
the model into a spatial variant alters our central finding 
of a tipping point, it could nevertheless be of interest to 
verify these hypotheses in future research using more 
complex, spatial agent- based models.

In conclusion, we used computational modeling to show 
that the clinical outcome of cancer patients is determined 
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by tipping points in tumor- immune dynamics. A tipping 
point influences not only treatment response but also 
the prognosis of patients and has major implications for 
future biomarker research.
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