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Figure 6  Effect of single or dual immune checkpoint blockade combined with concurrent chemoradiotherapy (CRT) in 
TC1-bearing mice. (A) TC1 tumor-bearing mice received a single injection of anti-CTLA-4 (200 µg ip) 2 days before CRT 
followed by three injections of anti-PD-1 and CTLA-4 antibodies (200 µg ip each) 3 days post CRT. (B) Tumor growth of CTRL, 
chemotherapy (CT), radiotherapy (RT) and CRT-treated mice with or without anti-CTLA-4/PD-1 therapy. Tumor responses 
(progressive disease (PD), partial response (PR), complete response (CR)) are indicated. (C) Survival curves of TC1 tumor-
bearing mice. (D) Representative images of mice with vitiligo undergoing treatment (n=8–12 mice/treatment group). Data are 
representative of two experiments. (E) Tumor-free mice that were treated with CRT+anti-CTLA-4/PD-1were re-challenged with 
TC1 and B16 tumor cells 100 days after CRT. (F) Tumor growth curve of untreated or CRT+ anti-CTLA-4/PD-1-treated cured 
mice rechallenged with TC1 (left) and B16 (right) tumor cells 100 days post CRT. (G) Splenocytes from TC1 tumor-cured mice 
previously treated with CRT+anti-CTLA-4/PD-1 were assessed ex vivo for specific interferon (IFN)-ɣ production in presence 
of E7 by IFN-ɣ ELIspot assay. Functional analysis of anti-E7 CD8+ T cell responses are shown. Data are representative of two 
independent experiments and are expressed as mean±SEM. (H) Splenocytes from CRT+anti-CTLA-4/PD-1-treated cured mice 
were assessed ex vivo for specific IFN-ɣ production in presence of telomerase by IFN-ɣ ELIspot assay. Functional analysis of 
CD8+ telomerase-derived peptides T-cell responses (left) and CD4+ telomerase-derived peptides T-cell responses (right) are 
shown. Data are representative of two independent experiments and are expressed as mean±SEM.
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epitope spreading phenomenon may also contribute to 
the efficacy of the CRT combined with anti-CTLA-4/PD-1 
bitherapy.

In the CT26 model, which mimic microsatellite stable 
(MSS) colorectal cancer, we also found that CRT was 
able to sensitize this tumor to the dual anti-CTLA-4/
PD-1 blockade in BALB/c mice. Notably, more than 75% 
of CT26 tumor-bearing mice treated with the combo 
CRT+anti-CTLA-4/PD-1 displayed complete tumor 
regression as compared with CRT combined with a single 
ICI (figure 7A).

Finally, we tested this combination approach in MC38 
tumor, a second model of colorectal cancer, syngeneic 
in C57BL/6 mice. This tumor has additional advantage 
of being a microsatellite instable (MSI) CRC model 
known to be more sensitive to checkpoint inhibitors.36 
Although tumor control was observed in all mice treated 
with anti-CTLA-4/PD-1, complete remissions were only 
achieved in MC38 tumor-bearing mice treated with the 
combo CRT+anti-CTLA-4/PD1 (60%) (figure  7B,C). 
Although the cured mice failed to reject primary TC1 
graft (figure 7D,E), the growth of this tumor appeared to 
be slower in cured mice than in untreated control mice 
(figure 7E,F). In contrast, cured-mice successfully rejected 
a second challenge with MC38 cells and also exhibited 
functional CD8 T cells directed against A9M peptide, a 
neoepitope expressed by MC38 cells, thus demonstrating 
that the immune protection triggered by CRT was tumor 
specific (figure 7G,H).

Collectively, our results strongly support the capacity of 
CRT to establish a highly inflamed TME, suitable for ICI 
effectiveness.

DISCUSSION/CONCLUSION
Many synergistic combinational therapies have been 
designed to improve the success of current ICI.37 Among 
them, the combination of ICI with conventional cytotoxic 
therapies is currently used or evaluated in routine clin-
ical practice in many solid tumors.2 8 9 In this context, 
concurrent CRT also gained significant interest in the 
clinic as combinatorial strategy with ICI. CRT represents 
a standard curative treatment for several locally advanced 
cancers.38 The addition of CT to radiation synergistically 
improves locoregional control through the induction of 
irreversible DNA damages.38

In this study, we performed an in-depth understanding 
of the immunological effects of CRT on TME. Our results 
demonstrated the potent ability of CRT to convert a 
poorly immunogenic TME into a highly inflamed one.

The findings in patients with colorectal cancer demon-
strated that a neoadjuvant CRT (nCRT) creates a higher 
inflamed TME than nRT. The TME from most patients 
treated by nCRT displayed a transcriptomic signature 
related to activated and memory Th1 polarization as 
compared with the group treated by nRT alone. Although 
this cohort is limited, our results described a positive 
correlation between the inflamed signature induced by 

nCRT and the histological response.22 Indeed, more than 
65% of best histological response (Dworak ≥2) occurred 
in patients exhibiting a hot/lukewarm TME after neoad-
juvant therapy. The majority of high-inflamed tumors 
were observed after nCRT, suggesting that nCRT synergis-
tically exert an immune activation in the TME. The TME 
of patients with rectal cancer exposed to nCRT was more 
enriched in PD-L1 expressing cells than those treated 
by nRT alone. Indeed, more than 80% of tumor from 
patients treated by nCRT exhibited a high score of PD-L1 
expression. Many evidences support that the level of 
PD-L1 expression in TME is correlated to the efficacy of 
ICIs and thus, PD-L1 status became a standard predictive 
biomarker for anti-PD-1/PD-L1 therapy decision in some 
cancers.39 Of note, less than 10% of tumors untreated 
by a neoadjuvant therapy (surgery exclusive) exhibited 
a high score of PD-L1 expression. The difference of 
in-situ immune reaction between nCRT and nRT may be 
related to a synergistic immune effect. Indeed, like RT, 
capecitabine also displays immune stimulatory effects 
which justified its combination with immunotherapy.40–42 
However, we cannot exclude that the difference of 
in-situ immune levels between nRT and nCRT tumors 
may be explained by tumoral-associated features such 
as mismatch repair, KRAS, BRAF mutational status and 
differentiation grade, rather than treatments received. 
Nevertheless, as treatment regimens are not associated to 
these features, the probability of unbalanced frequencies 
is decreased in treatment groups and so these parameters 
should not interfere with observed differences. The treat-
ment duration does not seem to have major impact on 
immune microenvironment as all patients with nRT that 
had LC or SC RT exhibited a cold homogeneous immune 
signature except one patient with LC in Nanostring-based 
transcriptomic analysis. Thus, these results suggest that 
the immune activation triggered by nCRT could create a 
more suitable TME for ICI action rather than nRT.

To study more precisely the immunological changes 
induced by CRT in the TME, we performed a high 
throughput translational study in mouse tumor models 
exposed to RT, CT or CRT.

The study was conducted in C57BL/6 mice using 
HPV16 E7 +TC1 tumor and in BALB/c mice with CT26, 
a syngeneic model of colon cancer. These malignancies 
are typically treated by platinum-based CRT in clinical 
settings. Thus, cisplatin and 5-fluorouracil, two common 
radio-sensitizing cytotoxic drugs for human cancers, 
followed by RT at focal 8 Gy were administered to tumor-
bearing mice.43 44

Like in patients with colorectal cancer, transcriptomic 
data from TILs isolated in CT26 and TC1 tumors showed 
that inflammatory responses, cellular-mediated immu-
nity and the INF-γ signaling pathway were synergistically 
enriched in CRT-exposed TME. Kinetic analysis of T-cells 
from CRT-exposed TME indicates that CRT promotes a 
massive and early expansion of CD8+ T-cells within the 
tumor during the first 7 days, followed by a contraction 
phase at days 15–21. The importance of newly T-cell 
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Figure 7  Effect of single or dual immune checkpoint blockade combined with chemoradiotherapy (CRT) in CT26 and MC38 
tumor-bearing mice. (A) CT26 tumor-bearing mice received or not a single injection of anti-CTLA-4 (200 µg ip) 2 days before 
CRT followed by three injections of anti-PD-1 and/or CTLA-4 antibodies (200 µg ip each) 3 days post CRT. Tumor growth of 
CTRL and CRT-treated mice with or without anti-CTLA-4/PD-1 therapy. Tumor responses (progressive disease (PD), partial 
response (PR), complete response (CR)) are indicated. (B) MC38 tumor-bearing mice received or not a single injection of anti-
CTLA-4 (200 µg ip) 2 days before CRT followed by three injections of anti-PD-1 and/or CTLA-4 antibodies (200 µg ip each) 
3 days post CRT. Tumor growth of CTRL and CRT-treated mice with or without anti-CTLA-4/PD-1 therapy. Tumor responses 
(progressive disease (PD), partial response (PR), complete response (CR)) are indicated. (C) Survival curves of MC38 tumor-
bearing mice. Data are representative of two experiments with 6–8 mice/group, the Bonferroni method was used. ***p<0.001. 
(D) MC38 tumor-free mice that were treated with CRT+anti-CTLA-4/PD-1 were rechallenged with TC1 tumor cells. Experimental 
scheme is depicted. (E) Tumor growth curve of TC1 tumors engrafted to untreated or MC38 tumor-free mice previously treated 
by CRT+anti-CTLA-4/PD-1. (F) Kinetic of TC1 tumor growth in CTRL and MC38 tumor-free mice previously treated with 
CRT+anti-CTLA-4/PD-1. (G) Tumor growth curve of MC38 tumors engrafted to untreated or MC38 tumor-cured mice previously 
treated by CRT+anti-CTLA-4/PD-1. (H) Splenocytes from MC38-cured mice previously treated by CRT+anti-CTLA-4/PD-1 
were assessed ex vivo for specific interferon (IFN)-ɣ production in presence of the A9M neoepeptide by IFN-ɣ ELIspot assay. 
Functional analysis of anti-A9M CD8+ T cell responses are shown. Data are representative of one independent experiment and 
are expressed as mean±SEM. Kruskal-Wallis test was used; *p<0.05.

 on January 27, 2022 by guest. P
rotected by copyright.

http://jitc.bm
j.com

/
J Im

m
unother C

ancer: first published as 10.1136/jitc-2020-002256 on 6 July 2021. D
ow

nloaded from
 

http://jitc.bmj.com/


14 Lauret Marie Joseph E, et al. J Immunother Cancer 2021;9:e002256. doi:10.1136/jitc-2020-002256

Open access�

migration was supported by results showing that T-cells 
depletion during the expansion phase (day 7) abrogated 
the ability of CRT to delay tumor growth in contrast to 
T cell depletion performed prior CRT. These findings 
are in line with report by Shinto and colleagues showing 
increased CD8+ T-cell infiltration in tumor biopsies from 
patients with rectal cancer treated by CRT.18 Further-
more, our recent findings in patients with rectal cancer 
showed a positive association between the signs of local 
cytotoxic immune activation and the production type-I 
interferon-associated molecules and the response to 
neoadjuvant CRT.45 These results highlight that the 
effectiveness of CRT relies on its capacity to foster early 
expansion of functional tumor-reactive CD8+ T cells in 
the TME.

Another important result of this study both in human 
and mouse concerns the potent capacity of CRT to trigger 
tumor-specific CD103+ tissue resident memory CD8+ T 
cells expansion and activation in the TME both in TC1 
and CT26 models.

TRM are usually confined within non-lymphoid tissues, 
and rapidly display effector functions on antigen stim-
ulation. Intratumoral TRM cells have been detected in 
several solid tumors and are thought to play a critical 
role in cancer immunosurveillance as well as in immu-
notherapy.28 30 46 We found that genes encoding Notch 
and Runx3 transcription factors, two master regulators 
involved in CD8+TRM cells induction and maintenance30 47 
were highly upregulated and positively correlated to TRM 
signature after CRT. This capacity of CRT to promote 
strong TRM stimulation may explain the positive correla-
tion observed between the magnitude of TRM signature 
and the best histological response after nCRT in the rectal 
cancer cohort. Recent studies in mice suggested that 
irradiated intratumoral TRM cells, which are more radio-
resistant than circulating T cells mediate tumor control 
in the absence newly-infiltrating T cells.48 Although the 
dependence of CRT on intratumoral TRM activation was 
not formally demonstrated in this study, our results indi-
cate that both de novo effector T cells infiltration and TRM 
cells expansion can mediate tumor control after CRT.

Searching for the mechanism underlying the in situ 
T cell priming mediated by CRT, we demonstrated that 
fully activated CD103+ DCs from TDLN are involved in 
the robust antitumor T cell activation observed after 
CRT. This observation suggests that these CD103+ DCs 
migrate through TDLN to stimulate T cells and also 
able to prime CD103+ TRM cells in situ.26 49 This obser-
vation is also in line with previous data suggesting that 
avoiding irradiation of tumor-draining lymph nodes 
(TDLN) supports immune activation.50 Indeed, in this 
study, tumors were engrafted in the abdominal flank for 
technical convenience, thus allowing the radiation field 
to be selectively delivered to the tumor. Accordingly, we 
observed that DCs from TDLN of mice treated with RT 
alone were able to effectively stimulate naïve T cells, such 
as DCs from CRT exposed tumors (not shown). Further 
investigations with orthotopic models or using genetically 

engineered mouse models would be needed to properly 
mimic human cancer settings.

Although we found that CRT triggers adaptive immune 
activation in the TME, this does not really translate into 
inhibition of tumor growth. Hence, the rate of complete 
and durable responses observed in our mouse tumor 
models did not exceed 15%. This raises the question of 
why the antitumor immunity primed by CRT is not suffi-
cient to eradicate tumor in most mice. One explanation 
relies in the ambivalent effect of RT capable to promote 
immune suppressive cells such as Tregs and MDSCs.32 51 
Here, the suppressive side effects observed after CRT were 
inherent to radiation and not to CT (cisplatin and 5 fluo-
rouracil), which did not induce Tregs expansion but can 
deplete MDSC in vivo.10 In line with this, we demonstrated 
that temporal depletion of Tregs increased CRT-induced 
antitumor CD8+ TILs and in turn, improved the efficiency 
of CRT.

Because the induction of T-cell exhaustion has been 
involved in acquired resistance to CT or RT,52–54 we 
hypothesized that this phenomenon could be synergis-
tically activated by CRT. Consistently, our data revealed 
overexpression of immune checkpoints (PD-1, TIM-3) on 
TILs expanded after CRT. Furthermore, the respective 
ligands of these receptors, especially PD-L1 was found 
to be upregulated early after CRT and its expression on 
tumor cells positively correlated with the dynamic PD-1+C-
D8+TILs, suggesting an adaptive IFN-ɣ-mediated immune 
resistance in the TME.55 The adaptive resistance phenom-
enon was also found in the TME of rectal patients treated 
with nCRT.

All above indicates that platinum-based CRT estab-
lishes a highly inflamed TME, enriched in TILs and TRM 
cells, PD-L1 and IFN-ɣ signaling, factors required for the 
successful responsiveness to ICI.4 12 Then, we evaluated 
concurrent combination of CRT with ICI in HPV16 E7 
+TC1 tumor as a model of head and neck cancers known 
to be sensitive to immunotherapy and in CT26, a micro-
satellite stable phenotype (MSS) colon cancer which is 
less sensitive to ICI. Results from these two models show 
that CRT sensitized TC1 and CT26 to PD-1 or CTLA-4 
blockade therapy. However, this combination strategy was 
not able to induce complete tumor eradication in most 
mice. In contrast, our results reveal that combining CRT 
with dual CTLA-4 and PD-1 blockade induced drastic 
tumor eradication in both in TC1 and CT26 model. In 
these two tumor models, around 75% of tumor-bearing 
mice achieved complete tumor regression as compared 
with 17% and 10% when CRT was combined with a single 
ICI in CT26 and TC1 models, respectively. These results 
suggest that both CTLA-4 and PD-1 inhibition is required 
for optimal sustaining of CRT-induced adaptive anti-
tumor T-cell immunity. This is supported by the ability 
of the combinational therapy to promote robust and 
long-lasting antitumor T cell immunity that confer resis-
tance against a second tumor challenge. Previous reports 
indicated that concurrent blockade of the PD-1/PD-L1 
and CTLA-4 pathways may have complementary cellular 
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mechanisms distinct from monotherapy, leading to 
better tumor control.36 56 For example, highly exhausted-
phenotype CD8+T cells were expanded following anti-
PD-1 monotherapy but not after anti-CTLA-4/PD-1 
bitherapy.57 Since CTLA-4 is highly expressed on Tregs, 
the anti-CTLA-4 could also contribute to inhibit suppres-
sive Tregs cells induced after CRT.56 58

Interestingly, we confirmed these results in a third model 
of MC38 tumor used as MSI phenotype which represents 
a prototype of immune-sensitive tumor. In MC38 model, 
the heat promoting effect of CRT also resulted in a better 
efficiency compared with anti-CTLA-4/PD-1 bitherapy. 
Nevertheless, combining with CT or RT alone would prob-
ably do the same. The CRT regimen used here represents 
a limit of this study since a single fraction of 8 Gy does not 
reflect the current protocol used in the clinic. However, 
previous studies showed that the delivery of 8 Gy per frac-
tion induced CD8 T cells recruitment in the tumor.44 Thus, 
we choose this dose for the present study. Moreover, it has 
recently been reported that various fractionation RT dose 
and schemes differentially modulate the immune response 
in TME and thus, tumor control when associated with 
ICI.59 60 Hence, the immune responses mediated by a frac-
tionated radiation protocol in combination with more rele-
vant chemotherapies also deserve further investigations.

Multiple combinations of concurrent/sequential CRT 
plus ICI are currently evaluated in clinic or used as stan-
dard of care in some indications.2 15 16 Although the safety 
profile of these combinational therapies does not seem to 
limit their development, the optimal timing to introduce 
ICI therapy is still questioned.

In conclusion, this study deeply dissects CRT-mediated 
immune mechanisms and demonstrates the ability of CRT 
to synergistically promote an inflamed TME, robust adap-
tive antitumor T-cell immunity, two features that are suit-
able for ICIs action. Our results strengthen the rational to 
concurrently combine CRT to ICI for optimal antitumor 
response.
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