Systematic review of combinations of targeted or immunotherapy in advanced solid tumors

Aaron C Tan 1,2, Stephen J Bagley,3 Patrick Y Wen,4 Michael Lim,5 Michael Platten 1,6,7 Howard Colman,8 David M Ashley,9 Wolfgang Wick,6 Susan M Chang,10 Evanthia Galanis,11 Alireza Mansouri,12 Simon Khagi,13 Minesh P Mehta,14 Amy B Heimberger,15 Vinay K Puduvalli,16 David A Reardon,4 Solmaz Sahebjam,17 John Simes,18 Scott J Antonia,9 Don Berry,19 Mustafa Khasraw 1,9

ABSTRACT
With rapid advances in our understanding of cancer, there is an expanding number of potential novel combination therapies, including novel–novel combinations. Identifying which combinations are appropriate and in which subpopulations are among the most difficult questions in medical research. We conducted a Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)-guided systematic review of trials of novel–novel combination therapies involving immunotherapies or molecular targeted therapies in advanced solid tumors. A MEDLINE search was conducted using a modified Cochrane Highly Sensitive Search Strategy for published clinical trials between July 1, 2017, and June 30, 2020, in the top-ranked medical and oncology journals. Trials were evaluated according to a criterion adapted from previously published Food and Drug Administration guidance and other key considerations in designing trials of combinations. This included the presence of a strong biological rationale, the use of a new established or emerging predictive biomarker prospectively incorporated into the clinical trial design, appropriate comparator arms of monotherapy or supportive external data sources and a primary endpoint demonstrating a clinically meaningful benefit. Of 32 identified trials, there were 11 (34%) trials of the novel–novel combination of anti-programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) and anti-cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) therapy, and 10 (31%) trials of anti-PD-1/PD-L1 and anti-vascular endothelial growth factor (VEGF) combination therapy. 20 (62.5%) trials were phase II trials, while 12 (37.5%) were phase III trials. Most (72%) trials lacked significant preclinical evidence supporting the development of the combination in the given indication. A majority of trials (69%) were conducted in biomarker unselected populations or used pre-existing biomarkers within the given indication for patient selection. Most studies (66%) were considered to have appropriate comparator arms or had supportive external data sources such as prior studies of monotherapy. All studies were evaluated as selecting a clinically meaningful primary endpoint. In conclusion, designing trials to evaluate novel–novel combination therapies presents numerous challenges to demonstrate efficacy in a comprehensive manner. A greater understanding of biological rationale for combinations and incorporating predictive biomarkers may improve effective evaluation of combination therapies. Innovative statistical methods and increasing use of external data to support combination approaches are potential strategies that may improve the efficiency of trial design. Designing trials to evaluate novel–novel combination therapies presents numerous challenges to demonstrate efficacy in a comprehensive manner. A greater understanding of biological rationale for combinations and incorporating predictive biomarkers may improve effective evaluation of combination therapies. Innovative statistical methods and increasing use of external data to support combination approaches are potential strategies that may improve the efficiency of trial design.

INTRODUCTION
With rapid advances in our understanding of cancer genomics and immunobiology, an expanding number of novel therapies are being evaluated in clinical trials. As a consequence, there is an exponentially increasing number of mathematically possible drug combinations, including novel–novel combinations, in which two or more drugs are investigational and are not yet approved standards of care. Concordantly, there has been an increase in the number of clinical trials evaluating combination therapies. The use of combination therapies to improve efficacy has traditionally been a central tenet of medical oncology ever since the initial use of combination chemotherapy regimens in hematological malignancies and breast cancer. The underlying rationale is anchored in the synergistic or additive effects of drugs with differing and potentially complementary mechanisms of action to increase the likelihood of response, forestall or overcome resistance and minimize overlapping toxicities. However, patient-to-patient variability and...
the independent action of drugs may also confer benefit for combination therapies without additive or synergistic interactions.5

Multiarm, ‘pick-the-winner’ or factorial trial designs may often be used to evaluate more than one novel treatment individually and in combination in a single trial.5 However, it may be impractical to conduct such trials due to finite resources, particularly with an increasing number of novel therapies and potential combinations. Identifying which combinations are appropriate in which patient subpopulations are among the most difficult questions in medical research. Garnering regulatory approval requires demonstrating that each component of a combination contributes to its benefit. This creates numerous challenges for clinicians, industry and regulatory bodies alike in designing, conducting and interpreting trials of novel–novel combination therapies. Therefore, the rational, efficient and effective evaluation of novel–novel drug combinations is crucial. Regulatory agencies, such as the US Food and Drug Administration (FDA), have recognized these challenges and have released formal guidance to aid in designing, conducting and interpreting trials of novel–novel combination therapies. Selected high-tier peer-reviewed journals (New England Journal of Medicine, Lancet, Journal of the American Medical Association, Lancet Oncology, Journal of Clinical Oncology, Cancer Discovery, JAMA Oncology, and Annals of Oncology). These journals were selected as the top-ranked general medical or general oncology journals by impact factor that publish oncology clinical trials according to the Journal Citation Reports 2019.

Study selection

A priori inclusion criteria were established. To be eligible for inclusion, studies had to be primary research articles reporting the outcomes of a phase II or III clinical trial evaluating novel–novel combination therapy with programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) or cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) immune checkpoint targeting agents or molecularly targeted agents. Novel–novel combination therapy was defined as two or more investigational drugs, of which none were approved or recommended by treatment guidelines for the given indication. Exclusion criteria included pediatric studies (subjects<18 years of age), observational studies, meta-analyses, publications using pooled data from two or more trials, dose finding or phase I trials, early stage or locally advanced solid tumor studies, and hematological studies. In cases of updated analyses after initial study publication, studies were included in this analysis only if prespecified additional analysis for mature data of primary endpoints was being reported. Board-certified or equivalent oncologists (ACT and MK) reviewed the articles for final eligibility, and disagreement was resolved by discussion and consensus.

Data extraction

Data extracted for each study included (1) study name/c clinical trial ID; (2) journal; (3) authors; (4) trial sponsor; (5) tumor type and study population (newly diagnosed vs recurrent); (6) drugs studied; (7) treatment arms; (8) trial phase; (9) treatment regimens; (10) Common Terminology Criteria for Adverse Events version used; (11) biomarker selection criteria; (12) trial endpoints; (13) response data including objective response rate (ORR); (14) survival data including progression-free survival (PFS) and overall survival (OS); (15) adverse event data, including number of total and severe adverse events and mortality; (16) FDA approval for the combination therapy as of September 2020.

Study evaluation and statistical analysis

The trial design of each study was evaluated according to a set of criteria adapted from the criteria outlined by the FDA in their guidance on the development of novel combination therapies.7 As this review consisted only of studies involving patients with advanced cancer, it was accepted that all studies fulfilled the first FDA criteria, in that studies were evaluating a combination treatment for a serious disease or condition. Further general criteria in the FDA guidance included (1) a strong biological rationale for use of the combination and (2) the combination may provide a significant therapeutic advance over...
available therapy and is superior to the individual agents. In addition, factors which contribute to the efficiency of trial design and subsequent clinical impact, such as the use of external data sources and clinically meaningful primary endpoints, were also evaluated.

Trial designs were assessed according to the following criteria:

1. A strong biological rationale, defined as any published in vitro or in vivo preclinical data demonstrating activity specifically for the combination therapy with class-specific agents over the individual agents alone in the given indication. The presence of a biological rationale was considered ‘limited’ if published preclinical data were conducted only in a single experimental model system.
2. Use of a new established or emerging predictive biomarker prospectively incorporated into the clinical trial design to define eligible patients for the combination therapy and for which there are no approved or recommended therapeutic options for the given biomarker.
3. Appropriate comparator arms where applicable, allowing for an evaluation of the efficacy and safety of the individual agents alone, or supportive external data sources such as prior studies of monotherapy.
4. Primary endpoint which demonstrates a clinically meaningful benefit in the given indication and according to the phase of trial, such as ORR, PFS and/or OS.

RESULTS
Study selection and characteristics
We identified 160 potentially eligible studies. After full-text review and applying the selection criteria, 32 studies were included in the final analysis (figure 1). The characteristics of the studies are listed in table 1. Studies were broadly classified based on the drug–target combination for further in-depth analysis according to the evaluation criteria (see online supplemental appendix for additional results).

Inhibition of PD-1/PD-L1 and CTLA-4 combination therapy
There were 11 trials of the novel–novel combination of anti-PD-1/PD-L1 and anti-CTLA-4 therapy, as shown in figure 2, table 2 and online supplemental appendix, including six (55%) phase II and five (45%) phase III trials. There were four studies conducted in non-small cell lung cancer (NSCLC), with a range of other tumor types in the remaining studies (figure 2).

Figure 1 Selection of studies evaluating a novel–novel combination therapy with a targeted therapy and/or immune checkpoint inhibitor.
We first assessed for the presence of a strong biological rationale for the combination approach, according to preclinical data supporting superior efficacy of the combination compared with the individual agents alone, in the given indication. The combination of nivolumab and ipilimumab was first approved in unresectable or metastatic melanoma in 2015, while there is currently no approved indication for the combination of durvalumab and tremelimumab. Preclinical models in melanoma demonstrated the enhanced antitumor activity for combination checkpoint blockade,\(^9\) and development of the combination was also supported by synergistic activity observed in murine colorectal and ovarian tumor models.\(^{10,11}\) Anti-CTLA-4 therapy impacts the lymphoid compartment, resulting in an increase in the number as well as breadth of specificity of tumor antigen reactive T cells, whereas anti-PD-1 impacts the immunosuppression within the tumor microenvironment. Clinical activity was subsequently seen in a phase I trial of nivolumab and ipilimumab in patients with advanced melanoma.\(^{12}\) As a result, trials of combination checkpoint blockade were evaluated in numerous other cancers. Of the 11 trials investigating inhibition of PD-1/PD-L1 and CTLA-4 combination therapy included in this review, there was a distinct absence of a strong biological rationale in most studied indications, with limited in vitro or in vivo data supporting the combination, although in many cases
there were preliminary signs of efficacy in early-phase trials, including phase I trials, emphasizing the need for better preclinical models to select rational combination immunotherapy approaches.

Utility of biomarkers

Next, we assessed the incorporation of a newly established or emerging predictive biomarker into the trial design that may suggest efficacy of the combination superior to monotherapy. Of the 11 trials, 6 (55%) were conducted in unselected patient populations. Four (44%) trials selected patients based on PD-L1 status, a previously established but somewhat controversial biomarker to select patients for anti-PD-1/PD-L1 monotherapy. Only one (9%) trial incorporated a new established or emerging biomarker, with the CheckMate 227 trial including a coprimary endpoint of PFS in patients with high tumor mutation burden (TMB) for nivolumab plus ipilimumab versus chemotherapy.

Comparator arms

The use of appropriate comparator arms that would allow for the comparison of the efficacy and safety of the individual agents alone versus the combination was also critically examined. This was evaluated in the context of the presence or absence of supportive external data sources, such as prior studies of monotherapy. Of the phase III trials, one trial was conducted in first-line renal cell carcinoma (RCC), with the remaining trials conducted in NSCLC. CheckMate 214 evaluated nivolumab plus ipilimumab versus sunitinib as first-line therapy in advanced RCC.

There was prior monotherapy data for ipilimumab in a phase II trial that allowed pretreated and treatment-naive patients. Nivolumab monotherapy, already approved in the treatment resistant setting, had also been evaluated in treatment-naive patients in a multicohort phase Ib expansion study. CheckMate 227 was an open-label phase III randomized trial in untreated advanced NSCLC. The trial was designed to test multiple nivolumab-based regimens in different patient populations. Nivolumab monotherapy had been previously evaluated in treatment-naive advanced NSCLC in the phase III CheckMate 026 study in patients with PD-L1 expression of 5% or more, while ipilimumab monotherapy had been evaluated in a previous phase II trial. Durvalumab plus tremelimumab was evaluated in two phase III trials for NSCLC, with the MYSTIC trial as first-line therapy and the ARCTIC trial as third-line or later line therapy. Durvalumab monotherapy had been investigated in the treatment-refractory setting in NSCLC, but neither durvalumab or tremelimumab monotherapy had been previously evaluated in the first-line setting.

Overall, the phase II and III trials of combination anti-PD-1/PD-L1 and anti-CTLA-4 therapy were appropriately designed with comparator arms of either individual agent alone and where there were no prior studies in the given indication.

Primary endpoints

The primary endpoints of the selected studies were also evaluated. In general, the phase II studies used ORR or DCR, while the phase III studies used PFS and/or OS. The primary endpoints were assessed overall as appropriate and clinically meaningful in all studies.

Inhibition of PD-1/PD-L1 and VEGF combination therapy

There were 10 trials of the novel–novel combination of anti-PD-1/PD-L1 and anti-vascular endothelial growth factor (VEGF) therapy, as shown in figure 3, online supplemental table 1 and online supplemental appendix.

Rationale for combinations

The combination of antiangiogenic therapy and immune checkpoint inhibitor therapy is based on evidence demonstrating that aberrant angiogenesis is a hallmark of many solid tumors, resulting in immune evasion. Therefore, normalization of abnormal tumor vasculature with antiangiogenic therapy may improve immune effector cell function by decreasing hypoxia, acidosis and nutrient deprivation and may increase the infiltration of immune effector cells into the tumor microenvironment in order to enhance the efficacy of immunotherapy. VEGF also has pleotropic immunosuppressive effects including impairment of dendritic cell function, as well as mobilization of immunosuppressive cells such as tumor associated macrophages, regulatory T cells, and myeloid-derived suppressor cells. Consequently, this has led to a proliferation of studies of novel–novel combinations of therapeutics from these two classes. Improved efficacy with combination inhibition of VEGF and immune checkpoint blockade has been shown in animal models for melanoma, colorectal cancer, breast cancer and...
<table>
<thead>
<tr>
<th>Study name</th>
<th>Year, lead author</th>
<th>Tumor type</th>
<th>Line of therapy</th>
<th>Combination regimen</th>
<th>Patients (total n)</th>
<th>Biomarker selection</th>
<th>Primary endpoint</th>
<th>Trial design</th>
<th>Primary endpoint met</th>
<th>FDA-approved therapy</th>
<th>Strong biological rationale</th>
<th>New biomarker</th>
<th>Comparator arms of monotherapy</th>
<th>Clinically meaningful primary endpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase II trials</td>
<td></td>
</tr>
<tr>
<td>Alliance A091401</td>
<td>2018, D’Angelo</td>
<td>Sarcoma</td>
<td>2+</td>
<td>Nivolumab plus ipilimumab</td>
<td>96</td>
<td>Unselected</td>
<td>ORR (N and N+l–non-comparative)</td>
<td>N or N+l (1:1)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>CONDOR</td>
<td>2019, Su</td>
<td>HNSCC</td>
<td>2+</td>
<td>Durvalumab plus tremelimumab</td>
<td>267</td>
<td>PD-L1</td>
<td>ORR (D+T–non-comparative)</td>
<td>PD-L1<25%, D+Tor D or T (2:1:1)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IFC-1501 MAPS2</td>
<td>2019, Scherpereel</td>
<td>Mesothelioma</td>
<td>2+</td>
<td>Nivolumab plus ipilimumab</td>
<td>125</td>
<td>Unselected</td>
<td>DCR at 12 weeks (N and N+l–non-comparative)</td>
<td>N or N+l (1:1)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>NCT02558894</td>
<td>2019, O'Reilly</td>
<td>Pancreatic</td>
<td>2</td>
<td>Durvalumab plus tremelimumab</td>
<td>65</td>
<td>Unselected</td>
<td>ORR (D+T and D)-lead-in safety study, with expansion pending efficacy signal, non-comparative</td>
<td>D+Tor D (1:1)</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>CO.26</td>
<td>2020, Chen</td>
<td>Colorectal</td>
<td>3+</td>
<td>Durvalumab plus tremelimumab</td>
<td>180</td>
<td>Unselected</td>
<td>OS (D+T vs BSC)</td>
<td>Yes</td>
<td>No</td>
<td>Limited</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>NRG GY003</td>
<td>2020, Zamarin</td>
<td>Ovarian</td>
<td>2+</td>
<td>Nivolumab plus ipilimumab</td>
<td>100</td>
<td>Unselected</td>
<td>ORR at 6 months (N vs N+l)</td>
<td>N or N+l (1:1)</td>
<td>Yes</td>
<td>No</td>
<td>Limited</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Phase III trials</td>
<td></td>
</tr>
<tr>
<td>CheckMate 214</td>
<td>2018, Motzer</td>
<td>RCC</td>
<td>1</td>
<td>Nivolumab plus ipilimumab</td>
<td>1096</td>
<td>Unselected</td>
<td>Coprimary: OS, ORR and PFS (in intermediate or poor prognostic risk)</td>
<td>N+ or sunitinib (1:1)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>CheckMate 227</td>
<td>2018, Hellmann</td>
<td>NSCLC</td>
<td>1</td>
<td>Nivolumab plus ipilimumab</td>
<td>1739</td>
<td>TMB</td>
<td>Coprimary: PFS (N+vs chemo in TMB high)</td>
<td>PD-L1<1%, N+or N or chemo (1:1:1)</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>CheckMate 227</td>
<td>2019, Hellmann</td>
<td>NSCLC</td>
<td>1</td>
<td>Nivolumab plus ipilimumab</td>
<td>1739</td>
<td>PD-L1</td>
<td>Coprimary: OS (N+vs chemo in PD-L1≥1%)</td>
<td>PD-L1<1%, N+or N+chemo or chemo (1:1:1)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MYSTIC</td>
<td>2020, Rizvi</td>
<td>NSCLC</td>
<td>1</td>
<td>Durvalumab plus tremelimumab</td>
<td>1118</td>
<td>PD-L1</td>
<td>Coprimary: OS (D vs chemo in PD-L1≥25%), PFS and OS (D+T vs chemo in PD-L1≥25%)</td>
<td>D or D+Tor chemo (1:1:1)</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ARCTIC</td>
<td>2020, Planchar</td>
<td>NSCLC</td>
<td>3+</td>
<td>Durvalumab plus tremelimumab</td>
<td>595</td>
<td>PD-L1</td>
<td>Coprimary: PFS and OS (D+T vs SOC in PD-L1<25%)</td>
<td>Study A: PD-L1<25%, D or SOC (1:1); Study B: PD-L1<25%, D+Tor SOC or D or T (3:2:2:1)</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

BSC, best supportive care; Chemo, chemotherapy; D, durvalumab; DCR, disease control rate; HNSCC, head and neck squamous cell carcinoma; I, ipilimumab; N, nivolumab; NSCLC, non-small cell lung cancer; ORR, objective response rate; OS, overall survival; PD-L1, programmed death ligand 1; PFS, progression-free survival; RCC, renal cell carcinoma; SOC, standard of care; T, tremelimumab; TMB, tumor mutation burden.
pancreatic neuroendocrine tumors.29 Specifically, lenvatinib plus anti-PD-1 therapy has also been evaluated in murine hepatocellular, colorectal and melanoma models.30,31 However, preclinical data demonstrating the efficacy of other specific drug combinations are sparse. For example, the combination of axitinib plus avelumab in RCC had not been published in preclinical models, and the rationale for the combination as first-line therapy was based on the toxicity profile for axitinib, with lower hepatotoxicity compared with sunitinib.32 There were also no preclinical data published for the remaining combination therapies in the given studied indications.

Utility of biomarkers

Of the 10 trials evaluating combination anti-PD-1/PD-L1 and anti-VEGF therapy, a majority (80\%) were conducted in biomarker unselected populations of patients. The two (20\%) trials, which included biomarker selection criteria, selected patients on the basis of PD-L1 IHC for avelumab33 and atezolizumab,34 respectively, in advanced RCC. PD-L1 IHC had not been previously established as a biomarker for patient selection for anti-PD-1/PD-L1 therapy in advanced RCC and therefore represented a new predictive biomarker in this patient population. No robust biomarkers for anti-VEGF therapy have been identified, and consequently, no trial attempted to select a biomarker for this class of agents.

Comparator arms

Overall, the phase II trials of combination anti-PD-1/PD-L1 and VEGF therapy were appropriately designed with comparator arms of either individual agent alone and where there were no prior studies in the given indication. Two phase III trials in patients with treatment-naïve metastatic RCC involved axitinib combinations. Axitinib monotherapy is approved in the second-line setting35 but had not been previously evaluated as first-line therapy.

Primary endpoints

The primary endpoint in five of the six phase II trials was ORR, with the remaining trial of pembrolizumab plus axitinib in metastatic sarcoma using PFS rate at 3 months as the primary endpoint. Co-primary endpoints of PFS and OS were used in the four phase III trials of combination anti-PD-1/PD-L1 and anti-VEGF therapy. Overall, these endpoints were considered appropriate and clinically meaningful. It should be borne in mind that in tumors of the central nervous system, both pseudoprogression and pseudoresponse have been identified as limiting characteristics of immune checkpoint inhibitors and antiangiogenic inhibitors, respectively, and in certain extracranial settings, concern regarding post-treatment peritumoral inflammatory changes (‘pseudo-progression’) following checkpoint inhibition has been described. These could limit the validity of ORR as an endpoint in such studies.

Inhibition of BRAF and MEK combination therapy

There were four trials of the novel–novel combination of BRAF and mitogen-activated protein kinase kinase (MEK) inhibitor therapy, as shown in online supplemental table 2 and online supplemental appendix. In addition, the BEACON CRC trial evaluated epidermal growth factor receptor (EGFR) inhibitor therapy in combination with BRAF and MEK inhibition.36

Rationale for combinations

In BRAF-mutated melanoma, the combination of BRAF and MEK-pathway inhibition had initially established clinical efficacy and tolerability compared with BRAF-inhibitor monotherapy with two combinations (dabrafenib plus trametinib, and vemurafenib plus cobimetinib).37,38 BRAF and MEK inhibitor combinations were originally developed based on preclinical data demonstrating that the combination could improve efficacy and delay the emergence of resistance.39,40 Reactivation of the MAPK pathway was a commonly reported mechanism of resistance to BRAF-inhibitor monotherapy.41,42 The combination of encorafenib and binimetinib was subsequently evaluated due to the increased potency of encorafenib compared with dabrafenib and vemurafenib, related to a greater dissociation half-life and improved pharmacodynamics.43 Furthermore, the combination with binimetinib, which ameliorated the toxicity of encorafenib monotherapy, allowed for high doses of encorafenib in the combination treatment.44

The rationale for the inhibition of BRAF, MEK and EGFR in BRAF V600E mutated colorectal cancer was developed after extensive preclinical investigations characterizing these pathways. Rapid feedback activation through EGFR after BRAF inhibition alone explained the poor efficacy of BRAF monotherapy and led to the development of BRAF plus EGFR inhibitor combinations.44,45 Subsequently, the combination of BRAF and MEK inhibition to improve efficacy compared with BRAF plus EGFR inhibition was also demonstrated preclinically.46,47
Utility of biomarkers
All four combination trials of BRAF plus MEK inhibition selected patients based on the presence of a BRAF mutation. For advanced melanoma, there were already approved therapies for patients harboring BRAF mutations. In the remaining tumor types, however, the combination therapies represented a new genotype-directed therapeutic option.

Comparator arms and primary endpoints
COLUMBUS was a three-arm, randomized phase III study evaluating combination encorafenib (450 mg daily dose) plus binimetinib versus encorafenib monotherapy (300 mg daily dose) versus vemurafenib monotherapy. Binimetinib monotherapy had previously been investigated in a phase II study for patients with NRAS or BRAF-mutated melanoma. BEACON CRC (Binimetinib, Encorafenib, and Cetuximab Combined to Treat BRAF-Mutant Colorectal Cancer) was also a three-arm, randomized phase III study, with study arms consisting of triplet therapy (encorafenib, binimetinib and cetuximab), doublet therapy (encorafenib and cetuximab) or investigator’s choice of cetuximab plus irinotecan or cetuximab plus FOLFIRI (control group). There had been no prior trials of encorafenib, binimetinib or cetuximab monotherapy in patients with advanced BRAF V600E mutated colorectal cancer. Cetuximab monotherapy had previously been studied in unselected patients with metastatic colorectal cancer. Retrospective analyses, however, suggested responses to cetuximab may be lower in patients with BRAF mutations. Additionally, vemurafenib monotherapy had been investigated in BRAF V600E mutated colorectal cancer in a small phase II trial and a basket trial. There was no meaningful clinical activity for vemurafenib monotherapy, with only one response out of 31 patients across the two trials. The primary endpoints in COLUMBUS and BEACON CRC were both considered clinically meaningful.

Inhibition of HER2 combination therapy
There were two studies reporting the novel–novel combination of human epidermal growth factor receptor 2 (HER2) inhibitor therapy with trastuzumab and pertuzumab, as shown in online supplemental table 3 and online supplemental appendix. Both studies were reports from the MyPathway basket trial for patients with colorectal cancer and salivary gland cancers, respectively.

Rationale for combinations
In colorectal cancer, pre-clinical data from HER2-amplified colorectal tumor grafts or xenografts, had demonstrated limited activity of single agent HER2 targeted therapy with trastuzumab, pertuzumab or lapatinib. Anti-tumor activity however, was increased with combination HER2 targeting regimens, although with trastuzumab plus lapatinib or pertuzumab plus lapatinib. The complementary mechanisms of action of trastuzumab and pertuzumab, and demonstrated efficacy in breast cancer, provided a strong rationale for this combination in HER2-amplified colorectal cancer.

Utility of biomarkers
As HER2 targeted therapies had not been approved in either tumor type, both studies were assessed as incorporating a new established or emerging biomarker.

Comparator arms and primary endpoints
As a phase IIa multiple basket trial of various targeted therapies in advanced solid tumors, ORR was considered an appropriate and clinically meaningful endpoint for the MyPathway trial. Understandably, as a basket trial, comparator arms of either trastuzumab or pertuzumab monotherapy were not included in this trial.

Other combination therapies
There were five trials evaluating other novel–novel combination therapies, including chemotherapy plus VEGF inhibitor therapy, chemotherapy plus poly(ADP-ribose) polymerase (PARP) inhibitor therapy, anti-PD-1 plus HPV16 vaccine therapy, anti-PD-1 plus an oncolytic virus therapy, and anti-PD-L1 plus MEK inhibitor therapy (online supplemental appendix and online supplemental table 4). COTEZO IMblaze 370 was a three-arm randomized phase III study of atezolizumab plus cobimetinib versus atezolizumab monotherapy versus regorafenib in patients with previously treated metastatic colorectal cancer. In the initial phase I trial of cobimetinib monotherapy, there were 41 patients with metastatic colorectal cancer, but no responses were seen. The combination of anti-PD-L1 and MEK inhibitor in colorectal cancer was developed on the basis of preclinical data, suggesting MEK inhibition could affect the immune contexture in the tumor microenvironment. Cobimetinib had been shown to increase T-cell infiltration into tumors and downregulate immunosuppressive cytokines and receptors. Combination therapy of cobimetinib with anti-PD-L1 inhibition also resulted in synergistic and durable tumor regression in mice models.

BROCADE was a three-arm phase II trial for patients with BRCA1/2-mutated recurrent or metastatic breast cancer. Patients were randomized to receive veliparib plus carboplatin/paclitaxel or veliparib plus temozolomide or carboplatin/paclitaxel. The primary endpoint was PFS comparing both veliparib containing arms with chemotherapy alone. Veliparib plus temozolomide was considered the novel–novel combination for this review. Veliparib monotherapy had been evaluated in a single-arm phase II trial for patients with germline BRCA1/2 associated metastatic breast cancer, while temozolomide monotherapy had previously shown a lack of activity in an unselected population of patients with metastatic breast cancer. The rationale for the combination of temozolomide and veliparib was from preclinical breast cancer models which demonstrated synergistic activity for the combination. At the time the study was developed,
there were no targeted therapies approved for patients BRCA1/2-mutated breast cancers.68

Overall evaluation of novel–novel combination therapies in oncology

The overall assessment and evaluation of trial designs of novel–novel combination therapies according to the four criteria are shown in figure 4.

Discussion

With an expanding number of novel therapies in clinical development and possible drug combinations, the fundamental challenge remains to evaluate rational combinations efficiently and effectively. In particular, a mechanistic understanding of the contribution of each drug to the treatment effect is needed, both from a scientific and regulatory perspective.69 Based on a systematic review of the top general medical and oncology journals over the past 3 years, we identified 32 recently published trials evaluating novel–novel combinations and evaluated each trial according to criteria adapted from FDA guidance on the development of novel combination therapies (box 1).

First, we assessed the strength of the biological rationale according to the presence of published preclinical data. Most trials (72%) lacked significant preclinical evidence supporting the development of the combination in the given indication. This was particularly evident in studies evaluating combination immune checkpoint blockade, for which there were only two studies with limited preclinical data in colorectal and ovarian cancers. This could, in part, be attributed to difficulties in developing preclinical animal models for immunotherapy, due to the inability of immunocompetent animal models to fully recapitulate the human immune system.70 Phase I studies were also excluded from our analysis, for which preclinical data may be especially relevant in the initial decision to evaluate a combination. Notably, however, significant clinical efficacy in tumor types such as NSCLC14 19 and RCC15 has been seen, despite the lack of supportive preclinical data. For some of these tumors (such as RCC), evidence of single agent activity or early efficacy in phase I trials served as the rationale for subsequent combination phase II and III studies. Coupled with the initial outcomes of trials in melanoma,12 this has resulted in a rapid increase in the number of combination immunotherapy trials.3 Nevertheless, the value of numerous trials with overlap and duplication in the combination partner targets, being conducted in unselected patients can be questioned,3 particularly in cancers for which single-agent immunotherapy has no activity. This observation highlights the importance of a greater understanding of tumor-specific immunity and the need to develop more effective biomarkers.71 Given the expanding number of potential combinations, rational selection of combinations based on mechanistic evidence and robust biological rationale is crucial.72 Additionally, for many trials in our review, preclinical data supporting the combination may have been demonstrated in other tumor types outside the given trial’s studied indication. Particularly for targeted therapies, there can be significant diversity across tumor types in the actionability of oncogenic driver mutations.75 BRAF V600E mutations are a prominent example, with a spectrum of activity for combination BRAF and MEK inhibition across histologies.74 This diversity is also exemplified in colorectal cancer, with the role for combined BRAF plus EGFR inhibition demonstrated elegantly in preclinical studies.84

Figure 4 Overall evaluation of novel–novel combination therapies of immune checkpoint inhibitors or molecular targeted agents in solid tumor oncology. (A) Strong biological rationale, (B) new biomarker, (C) comparator arms of monotherapy, and (D) clinically meaningful primary endpoint.
Box 1 Continued

2. In the design of a combination, consider whether other monotherapy arms are required when trial designs are conceived.
3. Consider if randomized arms of monotherapy are ethical; for example, if based on the mechanism of action, no clinical activity of monotherapy is expected.
4. Consider use of milestone survival or response endpoints to more efficiently generate early evidence.
5. Consider the incorporation of real-world evidence and novel hybrid designs, including in regulatory decision making.
6. Consider using (historical) data on single-agent efficacy, ideally to be obtained from multiple datasets and for all agents within the combination.
7. Consider introducing experimental therapies, including novel–novel combinations, into the trial at any time, allowing for rational combinations based on new biological or clinical insights.
8. Consider innovative but sound statistical methods, including use of historical or external data sources to support combination approaches.

Box 1 What is specifically learned about combinations of novel–novel agents?

Summary: We searched MEDLINE according to a modified Cochrane Highly Sensitive Search Strategy to identify published clinical trials that evaluated novel combination therapies in advanced solid tumors. Our search covered the period from July 1, 2017, to June 30, 2020. We restricted our search to articles published in eight selected peer-reviewed journals (New England Journal of Medicine, Lancet, Journal of the American Medical Association, Lancet Oncology, Journal of Clinical Oncology, Cancer Discovery, JAMA Oncology and Annals of Oncology). We identified 160 potentially eligible studies. After full-text review and applying the selection criteria, 32 studies were included in the final analysis (figure 1). Studies were broadly classified based on the drug–target combination for further in-depth analysis. Below is a summary of the key messages and recommendation.

A. Key Messages

1. Combinations are the future of clinical trials and this is so in most diseases.
2. Identifying which combinations are appropriate and in which patient subpopulations are among the most difficult questions in medical research.
3. In 72% of the analyzed studies, there was no significant preclinical evidence supporting the development of the specific combination in the given indication. This was especially true in studies with combination immune checkpoint blockade. This, in part, may be due to difficulties in developing immunocompetent animal models to fully recapitulate the human immune system.
4. In 69% of the analyzed studies, trial populations were unselected and did not use pre-existing predictive biomarkers for the given indication for patient selection.
5. Sixty-six per cent of the trials analyzed had appropriate comparator arms or had supportive external data sources such as monotherapy prior studies.
6. A greater understanding of the biological rationale for the combination and incorporating novel biomarkers can improve the practical evaluation of novel–novel combination therapies. However, biomarker-driven clinical trials using combination therapies present additional challenges and require careful consideration of the biomarkers’ performance and clinical utility.
7. Actionability of oncogenic driver mutations and utility of a specific biomarker in one cancer type does not predict similar outcomes due to difficulties in developing immunocompetent animal models.
8. There were no prior activity data for monotherapy in specific tumor cohorts in many basket trials (eg, MyPathway and ROAR).
9. Garnering regulatory approval requires demonstrating that each component of a combination contributes to its benefit. Such demonstrations may entail factorial designs and require interacting closely with regulators.
10. Partial factorial designs in adaptive clinical trials are likely to be the best and most efficient solutions for the future, especially in the context of precision medicine where biomarker-defined subpopulations are becoming the norm.

B. Recommendations

1. Avoid duplication in partner targets in unselected patients, particularly in cancers for which single-agent immunotherapy has no activity.

We then evaluated the use of a newly established or emerging predictive biomarker incorporated into the clinical trial design. Similarly, we found that a majority of trials (69%) were conducted in biomarker unselected populations or used pre-existing biomarkers within the given indication for patient selection. No studies included separate novel predictive biomarkers for both novel agents. Biomarker-driven clinical trial designs and analysis plans present additional challenges and require careful consideration of the biomarkers’ performance and clinical utility. However, the use of biomarker-selected patients has the potential to both improve patient care and accelerate drug development with greater efficiency.

Consider introducing experimental therapies, including novel–novel combinations, into the trial at any time, allowing for rational combinations based on new biological or clinical insights.

We conclude that, in the context of precision medicine, there is a strong need to move away from historical trial designs to biomarker-driven clinical trial designs. Biomarkers should be selected for their actionable potential, and the trial design should be optimized to fully leverage this information. The future lies in the integration of biomarkers into clinical trials to improve patient care and accelerate drug development.
the various elements among patients. Therefore, without relevant biomarker selection-driven trial design, clinical efficacy may not be gleaned with an all-comers approach.

Trial design with appropriate comparator arms of monotherapy was also assessed for each trial. Most studies (66%) were considered to have appropriate comparator arms or had supportive external data sources such as prior studies of monotherapy. Noticeably, in basket trials, such as MyPathway, and ROAR (Rare Oncology Agnostic Research), there were no data for monotherapy in certain tumor cohorts. However, basket trials in rare tumor types or uncommon molecular subsets clearly face practical challenges in terms of statistical design and patient recruitment. This emphasizes the need for a comprehensive understanding of tumor biology to identify optimal combinations. This heightens the importance of careful consideration to determine whether additional arms of monotherapy are required when trial designs are conceived.

Finally, all studies were evaluated as selecting a primary endpoint, which demonstrated a clinically meaningful benefit. Nonetheless, there can be complexities in determining the validity of surrogate endpoints particularly for early-phase combination immunotherapy trials. Milestone survival or response endpoints are increasingly used to more efficiently generate early evidence. KEYNOTE-146, for example, had a primary endpoint of ORR at 24 weeks, and ultimately was the basis of FDA approval for the combination of pembrolizumab plus lenvatinib in endometrial cancer. This trial also provides important insights into the use of historical data to evaluate the treatment effect of lenvatinib and pembrolizumab monotherapy. Additional exploratory post hoc analyses using propensity score approaches were also conducted by the FDA to evaluate the contribution of each agent. Importantly though, confirmatory randomized trials evaluating the combination are still ongoing.

Collectively, our review has identified that improvements in the effective evaluation of novel–novel combination therapies are clearly needed. Many of these findings may also be applicable to other combination therapies, including a new combination of two previously approved agents or the addition of a new agent to an existing approved therapy. In box 1, we provide a series of recommendations on the efficient design of future clinical trials evaluating novel combination therapies. Novel adaptive trial designs represent one approach that may enhance the efficiency of trials. GBM AGILE, a phase II/III adaptive platform trial (NCT03970447), is an example which incorporates statistical innovations such as Bayesian Adaptive design in a seamless registration trial. Candidate biomarkers may be identified and validated under this single platform master protocol. Furthermore, experimental therapies, including novel–novel combinations, may be introduced into the trial at any time, allowing for rational combinations based on advances in our biological understanding of tumors. Pharmaceutical platforms are also increasingly using multiarm randomized trials, for example, MORPHEUS (NCT03193190, NCT03281369, NCT03280563, NCT03424005, and NCT03337698), with multiple combination therapy arms compared against a single standard-of-care control arm, and allow for the introduction of novel–novel combinations at any time. Additionally, seamless phase I/II trials are becoming more commonly used and highlight that many of the considerations we have outlined previously may become increasingly important in the strategic design of early-phase studies as well. In particular, this includes the introduction of experimental rational combinations based on emerging biological or clinical insights—to establish appropriate dosing and characterize safety.

There are several limitations to our review, including the restricted time period (July 2017–June 2020) and journal selection, which may have introduced inherent publication bias into the studies included in our review. However, there were still 6/32 (19%) trials, which did not meet the primary endpoint included, and our evaluation criteria were not dependent on the trial’s primary outcome. In selecting only published trials, which was required to assess our evaluation criteria, contemporary trials such as the aforementioned adaptive platform trials will have been excluded. Broader evaluation of ongoing and unpublished trials is therefore also warranted, although outside the scope of this study. The included trials also represent the data known at the time of initial publication, not necessarily the data known at the time of trial design, and may therefore not completely reveal the historical sequence of events at the time of study conception. Ultimately though, there also needs to be inherent flexibility to adapt to rapidly evolving clinical paradigms. Lastly, there is significant heterogeneity of the included trials, particularly with regard to tumor types, trial design and mechanism of action of drug combinations. Nevertheless, the primary focus of this review was to identify guiding principles to improve trial efficiency in evaluating novel–novel drug combinations. Our analysis provided key insights into the published literature with recommendations (box 1) to improve paradigms for drug development and future trial design.

CONCLUSIONS

Designing trials to evaluate novel–novel combination therapies presents numerous challenges to demonstrate efficacy in a comprehensive manner. Critically, a greater understanding of the biological rationale for the combination and incorporating novel predictive biomarkers may further improve the effective evaluation of novel–novel combination therapies. Innovative statistical methods and increasing the use of historical or external data sources to support combination design with appropriate comparator arms of monotherapy was also assessed for each trial. Most studies (66%) were considered to have appropriate comparator arms or had supportive external data sources such as prior studies of monotherapy. Noticeably, in basket trials, such as MyPathway and ROAR (Rare Oncology Agnostic Research), there were no data for monotherapy in certain tumor cohorts. However, basket trials in rare tumor types or uncommon molecular subsets clearly face practical challenges in terms of statistical design and patient recruitment. This emphasizes the need for a comprehensive understanding of tumor biology to identify optimal combinations. This heightens the importance of careful consideration to determine whether additional arms of monotherapy are required when trial designs are conceived.

Finally, all studies were evaluated as selecting a primary endpoint, which demonstrated a clinically meaningful benefit. Nonetheless, there can be complexities in determining the validity of surrogate endpoints particularly for early-phase combination immunotherapy trials. Milestone survival or response endpoints are increasingly used to more efficiently generate early evidence. KEYNOTE-146, for example, had a primary endpoint of ORR at 24 weeks, and ultimately was the basis of FDA approval for the combination of pembrolizumab plus lenvatinib in endometrial cancer. This trial also provides important insights into the use of historical data to evaluate the treatment effect of lenvatinib and pembrolizumab monotherapy. Additional exploratory post hoc analyses using propensity score approaches were also conducted by the FDA to evaluate the contribution of each agent. Importantly though, confirmatory randomized trials evaluating the combination are still ongoing.

Collectively, our review has identified that improvements in the effective evaluation of novel–novel combination therapies are clearly needed. Many of these findings may also be applicable to other combination therapies, including a new combination of two previously approved agents or the addition of a new agent to an existing approved therapy. In box 1, we provide a series of recommendations on the efficient design of future clinical trials evaluating novel combination therapies. Novel adaptive trial designs represent one approach that may enhance the efficiency of trials. GBM AGILE, a phase II/III adaptive platform trial (NCT03970447), is an example which incorporates statistical innovations such as Bayesian Adaptive design in a seamless registration trial. Candidate biomarkers may be identified and validated under this single platform master protocol. Furthermore, experimental therapies, including novel–novel combinations, may be introduced into the trial at any time, allowing for rational combinations based on advances in our biological understanding of tumors. Pharmaceutical platforms are also increasingly using multiarm randomized trials, for example, MORPHEUS (NCT03193190, NCT03281369, NCT03280563, NCT03424005, and NCT03337698), with multiple combination therapy arms compared against a single standard-of-care control arm, and allow for the introduction of novel–novel combinations at any time. Additionally, seamless phase I/II trials are becoming more commonly used and highlight that many of the considerations we have outlined previously may become increasingly important in the strategic design of early-phase studies as well. In particular, this includes the introduction of experimental rational combinations based on emerging biological or clinical insights—to establish appropriate dosing and characterize safety.

There are several limitations to our review, including the restricted time period (July 2017–June 2020) and journal selection, which may have introduced inherent publication bias into the studies included in our review. However, there were still 6/32 (19%) trials, which did not meet the primary endpoint included, and our evaluation criteria were not dependent on the trial’s primary outcome. In selecting only published trials, which was required to assess our evaluation criteria, contemporary trials such as the aforementioned adaptive platform trials will have been excluded. Broader evaluation of ongoing and unpublished trials is therefore also warranted, although outside the scope of this study. The included trials also represent the data known at the time of initial publication, not necessarily the data known at the time of trial design, and may therefore not completely reveal the historical sequence of events at the time of study conception. Ultimately though, there also needs to be inherent flexibility to adapt to rapidly evolving clinical paradigms. Lastly, there is significant heterogeneity of the included trials, particularly with regard to tumor types, trial design and mechanism of action of drug combinations. Nevertheless, the primary focus of this review was to identify guiding principles to improve trial efficiency in evaluating novel–novel drug combinations. Our analysis provided key insights into the published literature with recommendations (box 1) to improve paradigms for drug development and future trial design.

CONCLUSIONS

Designing trials to evaluate novel–novel combination therapies presents numerous challenges to demonstrate efficacy in a comprehensive manner. Critically, a greater understanding of the biological rationale for the combination and incorporating novel predictive biomarkers may further improve the effective evaluation of novel–novel combination therapies. Innovative statistical methods and increasing the use of historical or external data sources to support combination...
approaches are potential strategies that may improve the efficiency of trial design.

Author affiliations
1 Division of Medical Oncology, National Cancer Centre Singapore, Singapore
2 Duke-NUS Medical School, National University of Singapore, Singapore
3 Abramson Cancer Center and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
4 Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
5 Department of Neuro-Oncology, Heidelberg University Hospital, Heidelberg, Germany
6 DKTK CBU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Centre, Heidelberg, Germany
7 Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
8 Duke Cancer Institute, Duke University, Durham, North Carolina, USA
9 Department of Neurosurgery, Northwestern University, Chicago, Illinois, USA
10 Department of Radiation Oncology, Miami Cancer Institute, Miami, Florida, USA
11 Department of Neurosurgery, Penn State Cancer Institute, Hershey, Pennsylvania, USA
12 Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
13 Division of Medical Oncology, Mayo Clinic Rochester, Rochester, Minnesota, USA
14 Department of Neurosurgery, Penn State Cancer Institute, Hershey, Pennsylvania, USA
15 Division of Medical Oncology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
16 Department of Radiation Oncology, Miami Cancer Institute, Miami, Florida, USA
17 Department of Neurosurgery, Northwestern University, Chicago, Illinois, USA
18 Department of Neurooncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
19 Department of Neuro-oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
20 NNHMR Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia
21 Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA

Twitter Michael Platten @platten_michael, Solmaz Sahebjam @SolmazSahebjam and Mustafa Khasraw @MKhasraw

Contributors ACT, SJJB, PYW, DB and MK conceived of the study and performed the data analysis. All authors performed data interpretation, contributed to the writing of the manuscript, and read and approved the final manuscript.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests ACT reports consultant or advisory roles for Amgen. SJJB reports research grants from Incyte, Eli Lilly, Novocure, GSK; consultant or advisory roles for Bayer and Novocure; and US patent for ‘Combination therapies of EGFRvIII chimeric antigen receptors and PD-1 inhibitors’. PYW reports consultative or advisory roles for Agios, AstraZeneca, Bayer, Boston Pharmaceuticals, CNS Pharmaceuticals, Elevate Bio Immunotherapeutics, Inovio, Karyopharm, Merck, Novartis, Nuvation Bio, Vascular Biogenics, VBI Vaccines, Voyager and OED; research funding from Agios, AstraZenea/MedImmune, Beigene, Celgene, Eli Lilly, Genentech/Roche, Kazia, MediciNova, Merck, Novartis, Nuvation Bio, Oncoceutics, Vascular Biogenics and VBI Vaccines; is an editor for UpToDate and Elsevier. ML reports consultant or advisory roles for Tocagen, SQZ Technologies, VBI, InCephalo Therapeutics and Pyramid Bio; non-research consulting roles for Stryker; research support from Arbor, Bristol-Myers Squibb, Accuray, DNAtrix, Tocagen, Biohaven and Kyri-Kyowa; and has patents for focused radiation+checkpoint inhibitors and local chemotherapy+checkpoint inhibitors. MP reports consultant or advisory roles for non-financial support from Roche, personal fees and non-financial support from Bayer, personal fees from Novartis, personal fees from Apogen, non-financial support from Pfizer, personal fees from Affiris outside the submitted work. In addition, MP has a patent EP2753518B1 licensed to Bayer, a patent EP2805008B1 issued, a patent US2018015403A1 pending, a patent US2018024617A1 pending, a patent US20170254803A1 pending, a patent WO2018146010A1 licensed to Bayer, a patent WO2019106431A1 licensed to Bayer, a patent WO2019106477A1 licensed to Bayer, a patent WO201910641A1 licensed to Bayer, and a patent WO201910642A1 licensed to Bayer. HC reports consultant or advisory roles for BlueprintMed, Karyopharm Therapeutics, Private Health, Orbis, Bayer, Forma Therapeutics and Adasstra Pharmaceuticals; research funding (Inst) from Newlink Genetics, Plexikon, Kadmon, Orbus, Merck, DNAtrix, Abbvie, Beigene, Form Therapeutics, GCAR, Array BioPharma, Karyopharm, Nuvation Bio, Bayer and Bristol Meyer Squibb. DMA reports stock and other ownership interests in Diverse Biotech; consulting or advisory roles for Iseta Oncology and Jackson Laboratory for Genomic Medicine; patents, royalties, other intellectual property for ‘Methods for predicting tumor response to immunotherapy, U.S. Provisional application no. 62/778’ and ‘Methods for predicting tumor response to immunotherapy, U.S. Provisional application no. 62/620,577’; and expert testimony for Tanyour, Nauts, McKinney & Gabarino, PLLC. WW reports consultant or advisory roles (Inst) for Agios, Bayer, MSD, Novartis and Roche; research funding (Inst) from Apogenix, Boehringer Ingelheim, Pfizer and Roche. SMC reports research funding (Inst) from Agios. EG reports consultant or advisory roles (Inst) for MedImmune, Inc., Agios Pharmaceuticals and Karyopharm; consultant or advisory roles for Gradalis, Inc. and Kiyatec, Inc.; research funding (Inst) from MedImmune, Inc., Tracan, Genentech and Bristol-Myers Squibb. MPM reports consultant or advisory roles for Zap, Mevion, Karyopharm, Tocagen and Astra-Zeneca; and Board of Directors options from Oncoceutics. ABH reports consultant or advisory roles for Caris Life Sciences and WCG Oncology; royalties on licensed intellectual property from Celldex Therapeutics and DNAtrix; research funding from Celldex, Merck, Novartis, MedImmune, MedImmune, Inc., AstraZeneca, Biogen, Beigene, Genentech/Roche, Inovio, Invivo, Immuno Biopharma, Inc., Merck, Merck KGaA, Montriser, Novocure, Oncorus, Oxigene, Regeneron, Stemline, Summito Dainippon Pharma and Taiho Oncology, Inc.; honoraria from Abvive, Advantagene, Agenus, Amgen, Bayer, Bristol-Myers Squib, Celldex, DelMar, EMD Serono, Genentech/Roche, Inovio, Invivo, Mediciona Biopharma, Inc., Merck, Merck KGaA, Montriser, Novocure, Oncorus, Oxigene, Regeneron, Stemline, Summito Dainippon Pharma and Taiho Oncology, Inc.; research funding (Inst) from Acerta Pharmaceuticals, Agens, Celldex, EMD Serono, Incyte, Immuno, Immunx and Tragara. SS reports consultant or advisory roles for Merck and Boehringer Ingelheim; research funding from Merck, Bristol-Myers Squib, and Brooklyn ImmunoTherapeutics. RJS reports research funding (Inst) from Bayer, Astra Zenea, Pfizer, Astella, Roche, Merck, Abbvie and Amgen. SJJ reports consultant or advisory roles for Achilles, Amgen, AstraZenea, Bristol-Meyers Squibb, Caris Life Sciences, CBMG, Celsius Therapeutics, G1 Therapeutics, GlaxoSmithKline, Mergen, Merck, Nektar, RAPT Therapeutics, Venn, Glyapse and Samyang; data review committee for EMD Serano. DB is co-owner of Berry Consultants, LLC, a company that designs adaptive Bayesian clinical trials for pharmaceutical and medical device companies, NIH cooperative groups, patient advocacy groups, and international consortia. MK reports consultant or advisory roles for Janssen, Abbvie, Ipsen, Pfizer Roche, and Jackson Laboratory for Genomic Medicine; research funding from Abbvie, Bristol-Meyers Squibb, and Specialized Therapeutics. AM, SK and VKP report no conflicts of interest.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Attribution Non Commercial (CC BY-NC) licence, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See http://creativecommons.org/licenses/by-nc/4.0/.

ORCID ids
Aaron C Tan http://orcid.org/0000-0001-7292-1114
Michael Platten http://orcid.org/0000-0002-4746-887X
Amy B Heimberger http://orcid.org/0000-0002-9970-8695
Mustafa Khasraw http://orcid.org/0000-0003-3249-9849

REFERENCES

Open access

Olson B, Li Y Rationalizing combination therapies.
T cell and anti-PD-L1 checkpoint blockade.
Han HS, Diéras V patients with BRCA1/2 locally recurrent/metastatic breast cancer:
carboplatin/paclitaxel versus placebo with carboplatin/paclitaxel in
Supplementary Appendix

Inhibition of PD-1/PD-L1 and CTLA-4 combination therapy

Comparator arms

All three phase II trials evaluating nivolumab plus ipilimumab, were randomized two-arm trials in the treatment resistant setting, with nivolumab monotherapy as the comparator arm. NRG GY003 compared nivolumab plus ipilimumab versus nivolumab alone in recurrent or persistent ovarian cancer [1]. Nivolumab and ipilimumab monotherapy had been evaluated in previous single-arm phase II trials and case series [2–4]. Alliance A09140111, for treatment-refractory metastatic sarcoma, and IFCT-1501 MAPS2, for platinum-pemetrexed resistant pleural mesothelioma, were both non-comparative studies – evaluating both the combination and nivolumab alone. There was a single small phase II trial of ipilimumab alone in patients with recurrent synovial sarcoma [5]; but no studies of nivolumab alone. There had been no previous trials of either nivolumab or ipilimumab monotherapy in malignant pleural mesothelioma.

There were three phase II trials evaluating the combination of durvalumab plus tremelimumab. CONDOR was a three-arm non-comparative randomized trial in PD-L1 low/negative (TC <25%) recurrent or metastatic head and neck squamous cell carcinoma (HNSCC).[6] There had been several prior phase II trials of durvalumab in HNSCC, from which greater response rates in patients with PD-L1 TC ≥25% had been seen [7,8]. However, there were no prior trials of tremelimumab monotherapy in HNSCC. The clinical trial CO.26 evaluated durvalumab plus tremelimumab versus best supportive care (BSC) for patients with metastatic treatment-refractory colorectal cancer (CRC) in a randomized two-arm study [9]. There had been no prior studies of either agent alone in treatment-refractory CRC. Finally, durvalumab plus tremelimumab was also evaluated in patients with metastatic pancreatic adenocarcinoma in a randomized, two-part, two-arm trial, with durvalumab monotherapy in the other arm [10]. Preliminary safety and efficacy data had been obtained from a phase 1 expansion cohort of durvalumab monotherapy [11]; however, there were no prior studies of tremelimumab monotherapy.

Inhibition of PD-1/PD-L1 and VEGF combination therapy

Comparator arms

There were five trials evaluating patients with metastatic RCC, including two phase II trials and three phase III trials. The phase II trials were single-arm studies evaluating atezolizumab plus bevacizumab in non-clear cell RCC [12] and pembrolizumab plus bevacizumab in pre-treated clear cell RCC [13] respectively. In each phase III trial,
combination therapy was evaluated in first-line metastatic clear cell RCC, and there were two arms with sunitinib as the comparator arm. JAVELIN Renal 101 evaluated axitinib plus avelumab [14], KEYNOTE-426 evaluated pembrolizumab plus axitinib [15] and IMmotion151 evaluated atezolizumab plus bevacizumab [16]. Axitinib monotherapy is approved in the second-line setting [17], but had not been previously evaluated as first-line therapy. Bevacizumab is also approved in pre-treated patients, in combination with interferon alfa, although it was previously evaluated as monotherapy in both the treatment naïve and pre-treated settings [18,19]. Pembrolizumab monotherapy had been evaluated in several phase II trials [20,21]. Atezolizumab [22] and avelumab [23] monotherapy had both been evaluated in expansion cohorts of the phase I trials in both first- and second-line settings.

Pembrolizumab plus lenvatinib was evaluated in KEYNOTE-146, a phase II basket trial in patients with selected advanced solid tumors, including RCC, endometrial cancer, HNSCC, melanoma, NSCLC and urothelial cancer [24,25]. There had been numerous trials of lenvatinib and pembrolizumab monotherapy in most of these indications [26–30]. Pembrolizumab plus axitinib was also evaluated in a single-arm trial in patients with advanced sarcomas. Both pembrolizumab and axitinib had been previously evaluated as monotherapy in phase II trials [31,32]. Finally, IMbrave150 was a phase III trial of atezolizumab plus bevacizumab versus sorafenib as first-line therapy in advanced HCC [33]. Both atezolizumab and bevacizumab had been evaluated as monotherapy for patients with HCC in prior early phase trials [34–36].

Inhibition of BRAF and MEK combination therapy

Rationale for combinations

The clinical activity of combination BRAF and MEK inhibitor seen in metastatic BRAF-mutated melanoma resulted in the evaluation of this combination in other cancers known to harbor oncogenic BRAF V600E mutations. In BRAF V600E mutated NSCLC, pre-clinical studies had demonstrated the role for BRAF inhibition, and also the potential sensitivity to MEK inhibition [37–39]. The combination of BRAF and MEK inhibition, however, had not been extensively evaluated in the pre-clinical setting. In BRAF V600E mutated anaplastic thyroid cancer, pre-clinical mouse and cell line models demonstrated the improved efficacy of combination BRAF and MEK inhibition compared with BRAF inhibition alone [40].

Comparator arms and primary endpoints

The trial evaluating dabrafenib plus trametinib in metastatic BRAF mutated NSCLC was a multicohort phase II trial [41]. Cohort A investigated dabrafenib monotherapy in both pre-treated and untreated patients, cohort B investigated dabrafenib plus trametinib in pre-
treated patients, whilst cohort C investigated dabrafenib plus trametinib in first-line patients [42,43]. Trametinib monotherapy had not been previously evaluated for BRAF mutated NSCLC. ROAR was a basket trial of dabrafenib plus trametinib in nine different BRAF V600E mutated rare cancers, including anaplastic thyroid cancer. There had been no prior studies of dabrafenib or trametinib monotherapy in anaplastic thyroid cancer, although dabrafenib has been studied in BRAF V600E mutated papillary thyroid cancers [44]. The primary endpoint in the two phase II trials of dabrafenib and trametinib was ORR, assessed as appropriate and clinically meaningful.

Inhibition of HER2 combination therapy

Rationale for combinations

In salivary gland cancers, there was no pre-clinical data indicating the potential efficacy of the combination over monotherapy. This may be in part, due to the relative rarity of salivary gland cancers.

Utility of biomarkers

The MyPathway trial included a basket for patients with advanced solid tumors harboring HER2 alterations that included HER2 amplification, overexpression and/or mutation. Furthermore, these HER2 alterations could be locally assessed by any Clinical Laboratory Improvement Amendments (CLIA) certified test which would subsequently be assessed for eligibility by the medical monitor [45]. Specifically for colorectal cancer patients, HER2 alterations were limited to HER2 amplification, as assessed by a CLIA certified test. This could include fluorescence or chromogenic in situ hybridization (FISH/CISH), next-generation sequencing (NGS) or immunohistochemistry (IHC) [46].

Comparator arms and primary endpoints

There were also no prior studies of monotherapy treatment in either tumor type. However this should be considered in the context of pre-clinical data suggesting lack of efficacy for monotherapy in HER2-amplified colorectal cancer, as described above [47,48].

Other combination therapies

ISA 101 is a synthetic long-peptide HPV-16 vaccine, and was evaluated in combination with nivolumab in a single-arm phase II trial [49]. Eligible patients had incurable HPV-16-positive cancer, and included oropharyngeal, cervical, vulvar, vaginal, penile or anal primary tumors. The rationale for the combination therapy was on the basis of pre-clinical data demonstrating HPV-specific T-cell responses with ISA 101 in cervical cancer models [50,51]. However, in the early phase trials of ISA 101 monotherapy in patients with HPV-16 induced
gynecological cancers, there was no tumor regression [52,53]. It was hypothesized that this may be due to a tumor-induced immunosuppressive environment, and combination with anti-PD-1 therapy could improve efficacy [53]. Although there had been no pre-clinical models which evaluated the combination therapy. There were no prior studies of ISA 101 monotherapy in non-gynecological cancers, whilst nivolumab had previously been approved as monotherapy in unselected recurrent squamous cell carcinoma of the head and neck [54].

Pembrolizumab plus talimogene laherparepvec (T-VEC) combination therapy was investigated in a single-arm phase II trial for patients with pre-treated locally advanced or metastatic sarcoma [55]. T-VEC, an oncolytic immunotherapy, is approved in patients with advanced melanoma as monotherapy [56]. However, T-VEC monotherapy had not previously been evaluated in patients with sarcoma, whilst pembrolizumab monotherapy had been evaluated in patients with advanced sarcomas in a single-arm phase II trial [32]. There was also no pre-clinical data investigating the combination therapy, although the combination had been evaluated in a clinical trial for patients with metastatic melanoma [57].

References

Supplementary Tables

Supplementary Table 1. Combination anti-PD-1/PD-L1 and anti-VEGF therapy trials

<table>
<thead>
<tr>
<th>Study Name</th>
<th>Year, Lead Author</th>
<th>Tumor Type</th>
<th>Line of Therapy</th>
<th>Combination Regimen</th>
<th>Total Patient Number</th>
<th>Biomarker Selection</th>
<th>Primary Endpoint</th>
<th>Trial Design</th>
<th>FDA Approval Therapy</th>
<th>Strong Biologic Rational</th>
<th>New Biomarker</th>
<th>Comparator Arms of Monotherapy</th>
<th>Clinical Meaningful Primary Endpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase II trials</td>
<td></td>
</tr>
<tr>
<td>KEYNOTE-146</td>
<td>2019, Macker</td>
<td>Endometrial</td>
<td>1 to 3</td>
<td>Lenvatinib, pembrolizumab</td>
<td>54</td>
<td>Unselected</td>
<td>ORR at 24w</td>
<td>Pembrol+lenvatinib (single-arm/basket)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>NCT02636725</td>
<td>2019, Wilky</td>
<td>Sarcoma</td>
<td>2+</td>
<td>Axitinib, pembrolizumab</td>
<td>33</td>
<td>Unselected</td>
<td>PFS rate at 3m</td>
<td>Pembrol+axitinib (single-arm)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>NCT02673962</td>
<td>2019, Liu</td>
<td>Ovarian</td>
<td>2+</td>
<td>Bevacizumab, nivolumab</td>
<td>38</td>
<td>Unselected</td>
<td>ORR</td>
<td>Nivo+bevacizumab (single-arm)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>NCT02724878</td>
<td>2020, McGrigor</td>
<td>RCC (non-clear cell)</td>
<td>1+</td>
<td>Atezolizumab, bevacizumab</td>
<td>60</td>
<td>Unselected</td>
<td>ORR</td>
<td>Atezo+bevacizumab (single-arm)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>KEYNOTE-146</td>
<td>2020, Taylor</td>
<td>Multiple</td>
<td>2+</td>
<td>Lenvatinib, pembrolizumab</td>
<td>137</td>
<td>Unselected</td>
<td>ORR at 24w</td>
<td>Pembrol+lenvatinib (single-arm/basket)</td>
<td>Yes</td>
<td>No</td>
<td>Limited</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>BTCRC-GU14-003</td>
<td>2020, Dudek</td>
<td>RCC</td>
<td>2+</td>
<td>Bevacizumab, pembrolizumab</td>
<td>48</td>
<td>Unselected</td>
<td>ORR</td>
<td>Pembrol+bevacizumab (single-arm)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Phase III trials</td>
<td></td>
</tr>
<tr>
<td>JAVELIN Renal 101</td>
<td>2019, Motzer</td>
<td>RCC</td>
<td>1</td>
<td>Avelumab, axitinib</td>
<td>560</td>
<td>PD-L1</td>
<td>Co-primary: PFS & OS (in PD-L1 positive)</td>
<td>Avelumab+axitinib or sunitinib (1:1)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Study</td>
<td>Year</td>
<td>Tumor</td>
<td>n</td>
<td>Treatment</td>
<td>Co-primary:</td>
<td>Pembro+axitinib or sunitinib (1:1)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>------</td>
<td>-------</td>
<td>----</td>
<td>----------------------------</td>
<td>-------------</td>
<td>-----------------------------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>KEYNOTE-426</td>
<td>2019</td>
<td>RCC</td>
<td>1</td>
<td>Axitinib, pembrolizumab</td>
<td>Unselected</td>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>IMmotion151</td>
<td>2019</td>
<td>RCC</td>
<td>1</td>
<td>Atezolizumab, bevacizumab</td>
<td>PD-L1</td>
<td>Co-primary: PFS (in PD-L1 positive), OS</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>IMbrave150</td>
<td>2020</td>
<td>HCC</td>
<td>1</td>
<td>Atezolizumab, bevacizumab</td>
<td>Unselected</td>
<td>Co-primary: PFS, OS</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: Atezo = atezolizumab; HCC = hepatocellular carcinoma; m = months; Nivo = nivolumab; ORR = objective response rate; OS = overall survival; Pembro = pembrolizumab; PFS = progression-free survival; RCC = renal cell carcinoma; w = weeks.

Supplementary Table 2. Combination anti-BRAF and anti-MEK therapy trials
<table>
<thead>
<tr>
<th>Study Name</th>
<th>Year of Publication</th>
<th>Tumor Type</th>
<th>Line of Therapy</th>
<th>Combination Regimen</th>
<th>Total Patient Number</th>
<th>Biomarker Selection</th>
<th>Primary Endpoint</th>
<th>Trial Design</th>
<th>Prim ary Endpoint Met</th>
<th>FDA Approved Therapy</th>
<th>Strong Biological Rational</th>
<th>New Biomarker</th>
<th>Comparator Arms of Monotherapy</th>
<th>Clinical Meaningful Primary Endpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase II trials</td>
<td></td>
</tr>
<tr>
<td>NCT01336634</td>
<td>2017, Planchar</td>
<td>NSCLC</td>
<td>1</td>
<td>Dabrafenib, trametinib</td>
<td>36</td>
<td>BRAF V600E</td>
<td>ORR</td>
<td>D+T (single-arm/multiple cohort)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>ROAR</td>
<td>2018, Subbiah</td>
<td>Thyroid</td>
<td>1+</td>
<td>Dabrafenib, trametinib</td>
<td>16</td>
<td>BRAF V600E</td>
<td>ORR</td>
<td>D+T (single-arm/basket)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Phase III trials</td>
<td></td>
</tr>
<tr>
<td>COLUMBUS</td>
<td>2018, Dumon</td>
<td>Melanoma</td>
<td>1 or 2</td>
<td>Binimetinib, encorafenib</td>
<td>383</td>
<td>BRAF V600E</td>
<td>PFS (E+B vs V)</td>
<td>E+B or E or V (1:1:1)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>BEACON CRC</td>
<td>2019, Kopetz</td>
<td>Colorectal</td>
<td>1 or 2</td>
<td>Binimetinib, cetuximab, encorafenib</td>
<td>445</td>
<td>BRAF V600E</td>
<td>Co-primary: OS & ORR (E+B+C vs FOLFIRI/irinotecan+C)</td>
<td>E+B+C or E+C or FOLFIRI/irinotecan+C (1:1:1)</td>
<td>Yes</td>
<td>No*</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Abbreviations: B = binimetinib; C = cetuximab; D = dabrafenib; E = encorafenib; NSCLC = non-small cell lung cancer; ORR = objective response rate; OS = overall survival; PFS = progression-free survival; T = trametinib; V = vemurafenib.

*The combination of encorafenib plus cetuximab has been FDA approved

Supplementary Table 3. Combination anti-HER2 therapy trials
<table>
<thead>
<tr>
<th>Study Name</th>
<th>Year, Lead Author</th>
<th>Tumor Type</th>
<th>Line of Therapy</th>
<th>Combination Regimen</th>
<th>Total Patient Number</th>
<th>Biomarker Selection</th>
<th>Primary Endpoint</th>
<th>Trial Design</th>
<th>Primary Endpoint Met</th>
<th>FDA Approved Therapy</th>
<th>Strong Biologic Rational</th>
<th>New Biomarker</th>
<th>Comparator Arms of Monotherapy</th>
<th>Clinically Meaningful Primary Endpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>MyPathway</td>
<td>2019, Meric-Bernstam</td>
<td>Colorectal</td>
<td>2+</td>
<td>Pertuzumab, trastuzumab</td>
<td>57</td>
<td>HER2</td>
<td>ORR</td>
<td>T+P (single-arm/basket)</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>MyPathway</td>
<td>2020, Kurzrock</td>
<td>Salivary</td>
<td>2+</td>
<td>Pertuzumab, trastuzumab</td>
<td>19</td>
<td>HER2</td>
<td>ORR</td>
<td>T+P (single-arm/basket)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Abbreviations: ORR = objective response rate; P = pertuzumab; T = trastuzumab.

Supplementary Table 4. Other combination therapy trials
<table>
<thead>
<tr>
<th>Study Name</th>
<th>Year, Lead Author</th>
<th>Tumor Type</th>
<th>Line of Therapy</th>
<th>Total Patient Number</th>
<th>Biomarker Selection</th>
<th>Primary Endpoint</th>
<th>Trial Design</th>
<th>Primary Endpoint Met</th>
<th>FDA Approved Therapy</th>
<th>Strong Biological Rational</th>
<th>New Biomarker</th>
<th>Comparator Arms of Monotherapy</th>
<th>Clinical Meaningful Primary Endpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCT02187302</td>
<td>2017, Voss</td>
<td>RCC</td>
<td>3 or 4</td>
<td>Bevacizumab, CRLX101</td>
<td>111</td>
<td>Unselected</td>
<td>PFS (in clear-cell RCC)</td>
<td>CRLX101+bevacizumab or SOC (1:1)</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>BROCADE</td>
<td>2018, Han</td>
<td>Breast</td>
<td>1 or 2</td>
<td>Temozolomide, veliparib</td>
<td>290</td>
<td>BRCA1/2</td>
<td>PFS (VCP vs CP, VT vs CP)</td>
<td>V+CP or V+T or CP (1:1:1)</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>NCT02426892</td>
<td>2019, Massarelli</td>
<td>Multiple</td>
<td>1 or 2</td>
<td>ISA 101, nivolumab</td>
<td>24</td>
<td>HPV-16</td>
<td>ORR</td>
<td>ISA 101+nivolumab (single-arm)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>NCT03069378</td>
<td>2020, Kelly</td>
<td>Sarcoma</td>
<td>2+</td>
<td>Pembrolizumab, talimogene laherparepvec</td>
<td>20</td>
<td>Unselected</td>
<td>ORR at 24w</td>
<td>Pembrolizumab+T-VEC (single-arm)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>COTEZO IMblaze370</td>
<td>2019, Eng</td>
<td>Colorectal</td>
<td>3+</td>
<td>Atezolizumab, cobimetinib</td>
<td>363</td>
<td>Unselected</td>
<td>Co-primary: OS (atezolizumab+cobimetinib vs regorafenib, atezolizumab vs regorafenib)</td>
<td>Atezolizumab+cobimetinib or atezolizumab or regorafenib (2:1:1)</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Abbreviations: CP = carboplatin/paclitaxel; ORR = objective response rate; OS = overall survival; PFS = progression-free survival; RCC = renal cell carcinoma; SOC = standard of care; T = temozolomide; T-VEC = talimogene laherparepvec; V = veliparib; w = weeks.
A systematic review of combinations of targeted or immunotherapy in advanced solid tumors

Authors
Aaron C. Tan, Stephen J. Bagley, Patrick Y. Wen, Michael Lim, Michael Platten, Howard Colman, David M. Ashley, Wolfgang Wick, Susan M. Chang, Evanthia Galanis, Alireza Mansouri, Simon Khagi, Minesh P. Mehta, Amy B. Heimberger, Vinay K. Puduvalli, David A. Reardon, Solmaz Sahebjam, R. John Simes, Scott J. Antonia, Don Berry, Mustafa Khasraw

Correspondence
mustafa.khasraw@duke.edu

In Brief
Designing trials to evaluate novel-novel combination therapies presents numerous challenges to demonstrate efficacy in a comprehensive manner. A greater understanding of biological rationale for combinations and incorporating biomarkers may improve effective evaluation of combination therapies. Innovative statistical methods and increasing use of external data to support combination approaches are potential strategies that may improve the efficiency of trial design.