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Figure 5  Tryptophanylation activates the E3 ligase activity of TRIP12. (A) Tryptophanyl-tRNA synthetase (WARS) increased 
TRIP12, but not TRIP12K1136R tryptophanylation. Myc-tagged TRIP12 or TRIP12K1136R was expressed alone or co-overexpressed 
with WARS-HA in HEK293T cells. The tryptophanylation levels of anti-myc beads purified TRIP12 and TRIP12K1136R were 
examined. (B) WARS knockout decreased NFATc1 ubiquitination levels. NFATc1 was overexpressed alone or co-overexpressed 
with TRIP12 in WT or WARS-KO HEK293T cells. The ubiquitination levels of purified NFATc1 were detected. (C) WARS knockout 
increased endogenous NFATc1 levels. The NFATc1 levels in HEK293T cells and WARS-KO HEK293T cells were detected. 
Ablating TRIP12 tryptophanylation site abrogated Me-Trp supplemental or WARS overexpression to decrease NFATc1. 
NFATc1 levels were compared between HEK293T cells and TRIP12K1136R knockin HEK293T cells that were subject to Me-Trp 
supplemental (D) or WARS overexpression (E). (F) Tryptophanylation mimetic TRIP12K1136W had higher affinity to NFATc1 than 
wild-type TRIP12. Myc-tagged TRIP12 or TRIP12K1136W was each co-overexpressed with NFATc1-flag in HEK293T cells. The 
amount of TRIP12 or TRIP12K1136W that was co-immunoprecipitated with NFATc1 were detected. (G) Tryptophan altered the 
affinity between TRIP12 and WARS. FLAG-tagged TRIP12 was co-overexpressed with WARS-HA in HEK293T cells that were 
cultured with or without Me-Trp supplementation. The amount of WARS that was co-precipitated with TRIP12 was detected. 
(H) Tryptophan altered the affinity between TRIP12 and NFATc1. Flag-tagged NFATc1 was co-overexpressed with TRIP12-myc 
in HEK293T cells that were cultured with or without tryptophan starvation. The amount of TRIP12 that was co-precipitated with 
NFATc1 was detected. Tryptophan regulated the ubiquitination levels of NFATc1. NFATc1 was co-overexpressed with TRIP12 
in HEK293T cells. The ubiquitination levels of NFATc1 from Me-Trp supplemented (I) and tryptophan starved (J) cells were 
compared with those of untreated cells. (K) WARS knockdown decreased the affinity between TRIP12 and NFATc1. Myc-tagged 
TRIP12 was co-overexpressed with NFATc1-Flag in HEK293T cells and in HEK293T cells with WARS knockdown. The amount 
of TRIP12 co-immunoprecipitated with NFATc1 was detected. (L) WARS knockdown decreased ubiquitination of NFATc1. 
NFATc1 was overexpressed alone or co-overexpressed with TRIP12 in HEK293T cells and in WARS knockdown HEK293T cells. 
The ubiquitination levels of purified NFATc1 were detected. (M) Tryptophanylation site ablation abrogated WARS to enhance 
TRIP12-NFATc1 interaction. The amount of Myc-tagged TRIP12 co-precipitated with NFATc1-flag was detected when they were 
co-overexpressed in WARS-KO HEK293T cells that were with or without WARS overexpression. Quantitation of the western 
blot analysis was shown. (N) WARS overexpression increased ubiquitination of NFATc1. NFATc1 was overexpressed alone or 
co-overexpressed with TRIP12 in WARS-KO HEK293T cells in the presence or absence of WARS overexpression. Ubiquitination 
levels of NFATc1 were compared.
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apoptotic rate of LLC cells that were loaded with the OVA 
peptide (SIINFEKL) and co-cultured with CD8+ T cells at 
1:10. Conversely, it had a negligible effect on the apop-
totic rate of LLC that were cultured alone (figure 7D and 
online supplemental figure S7E). Enhancement in the 
toxicity of CD8+ T cells by tryptophan was also observed 
in mouse CT26 colorectal carcinoma cells (figure 7E and 
online supplemental figure S7F). These results, together 
with that kynurenine had negligible effects on TrpK and 
expression of NFATc1 (revised online supplemental 
figure S7G) and PD-1 (see figure  2C), IL-2, IFN-γ, and 
TNF-α (online supplemental figure S7H, I), showed that 
tryptophan potentiated the toxicity of CD8+ T cells by 
enhancing tryptophanylation toward cancer cells.

Consistent with the results of cultured cells, when LLC 
were injected subcutaneously into C57BL/6 mice, intra-
peritoneal administration of either Me-Trp or indoximod 
slowed down tumor growth and the combined treatment 

of Me-Trp and indoximod resulted in synergistic effect on 
tumor growth inhibition (figure 7F,G). Two observations 
were made in tumor grafts following Me-Trp and indox-
imod treatments. First, both Me-Trp and indoximod 
decreased the PD-1 levels of the CD8+ T cells of mice 
spleens (figure 7H, online supplemental figure S7J) and 
tumor-infiltrating lymphocyte (TIL) CD8+ T cells, while 
combined treatment of Me-Trp and indoximod led to 
greater decrease of PD-1 (figure 7I, online supplemental 
figure S7K). Second, the number of CD4+ and CD8+ T 
cells in the tumor mass of Me-Trp-treated and indoximod-
treated mice was more than double that of the tumors 
of untreated mice (figure  7J), Me-Trp and indoximod 
co-treatment showed a combined effect to enhance the 
number of CD4+ and CD8+ T cells, suggesting that these 
treatments enhanced CD8+ T cells survival and their 
tumor mass filtration ability.
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Figure 6  SIRT1 reverses TRIP12 K1136 tryptophanylation. Nicotinamide (NAM) decreased cell surface programmed cell death 
protein 1 (PD-1) and PD-1 messenger RNA (mRNA) of Jurkat cells. Activated Jurkat T cells were treated with 5 mM NAM for 6 
hours. PD-1 mean fluorescence intensity (MFI) and PD-1 positive cells were measured by flow cytometry (A). PD-1 mRNA was 
examined by reverse transcription quantitative PCR (RT-qPCR) (B). (C) NAM decreased mouse CD8+ T cells surface PD-1. Naïve 
CD8+ T cells were isolated from the spleen of BALB/c wild-type (WT) mouse and stimulated with anti-CD3/CD28 antibodies. 
PD-1 MFI and PD-1 positive cells were compared between NAM-untreated and NAM-treated cells. (D) TRIP12-interacting SIRTs 
screening. HA-tagged SIRTs was individually co-expressed with TRIP12-flag in HEK293T cells. Interaction between TRIP12 
and SIRTs was assayed by co-immunoprecipitation. (E) SIRT1 decreased the tryptophanylation of isolated TRIP12. HA-tagged 
SIRT1, SIRT2, SITR6, and SIRT7 were individually co-expressed with TRIP12-flag in HEK293T cells and the tryptophanylation 
levels of TRIP12 purified from each SIRT-expression cell were detected. (F) SIRT1 increased cell surface PD-1 expression. HA-
tagged SIRT1, SIRT6, and SIRT7 were individually overexpressed in Jurkat T cells, relative PD-1 MFI and percentage of PD-1+ 
cells were measured. (G) SIRT1 ablation in mice prevented NAM to decrease surface PD-1 expression. Naïve CD8+ T cells were 
isolated from the spleen of WT or SIRT1−/− C57BL/6 mice and activiated. Relative PD-1 MFI and percentage of PD-1+ cells were 
compared between NAM-treated and NAM-untreated mouse CD8+ T cells. *P<0.05, ***p<0.001; ns, not significant.
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Figure 7  Increased tryptophanylation potentiates T cells to eliminate cancer cells. Tryptamine increased cell surface PD-1 and 
PD-1 mRNA in Jurkat cells. Relative PD-1 MFI and percentage of PD-1+ cells (A) and PD-1 mRNA (B) were measured in Jurkat 
T cells and tryptamine-treated Jurkat T cells. n=3, mean ± SD. (C) Tryptamine increased cell surface PD-1 in mouse CD8+ T 
cells. Naïve CD8+ T cells were isolated from the spleen of BALB/c WT mouse and activated with anti-CD3/CD28 antibodies. 
Relative PD-1 MFI and percentage of PD-1+ cells were measured in cells treated with tryptamine as indicated. n=3, mean±SD. 
Tryptophan dose-dependently increased the cytotoxicity of CD8+ T cells. CD8+ T cells were isolated from OVA-immuned 
BALB/c mice by flow cytometry.The apoptotic rate of LLC cells (D) and CT26 cells (E) that were co-cultured with CD8+ T cells 
(CD8+ T cell: LLC/CT26=10:1) in media contained different levels of Me-Trp were measured. n=3, mean±SD. Intraperitoneal 
dose of Trp and/or indoximod elicited regression of tumor growth. Mice inoculated with the same number of LLC cells were 
treated by intraperitoneal dose of Me-Trp or indoximod, both Me-Trp and indoximod, or PBS (control), the growth of tumors 
volume (F) and the tumor sizes and weights of sacrificed mice (G) were shown. n=10, mean±SD. Intraperitoneal dose of Trp 
and/or indoximod decreased the PD-1 levels. Spleen CD8+ T cells (H) and CD8+ T cells of tumor-infiltrating lymphocytes (TILs, I) 
were isolated from PBS, intraperitoneal dose of Me-Trp (Me-Trp), indoximod, and both Me-Trp and indoximod mice groups and 
analyzed on day 22. Relative MFI of surface PD-1 and percentage of PD-1+ cells were measured by flow cytometry. See also 
online supplemental Figure 7G-H for the sorting of CD8+ T cells. n=10, mean±SD. (J) Intraperitoneal dose of Trp or indoximod 
increased tumor-infiltrating CD8+ T cells. Confocal microscopy images of CD4 (red) or CD8 (red) staining on mouse tumor 
sections from PBS, intraperitoneal dose of Trp (Me-Trp), indoximod, and both Me-Trp and indoximod mice groups. DAPI (blue) 
showed the staining of nuclear. The density per volume of the CD4 or CD8-positive cells in the tumor sections corresponding 
to p value was calculated. Scale bar 50 µm, n=30 (three images randomly acquired from each mouse, and ten mice each group 
were included), mean±SD. (K) Intraperitoneal dose of Trp and/or anti-PD-1 elicited regression of tumor growth. Mice inoculated 
with B16F10 cells were treated by intraperitoneal dose of Me-Trp or anti-PD-1, both Me-Trp and anti-PD-1, or PBS (control), 
the tumor sizes and weights of sacrificed mice were shown. n=10, mean±SD. Intraperitoneal dose of Trp or Trp combining 
anti-PD-1 decreased the PD-1 levels. Spleen CD8+ T cells (L) and CD8+ T cells of tumor-infiltrating lymphocytes (TILs, M) were 
isolated from PBS, intraperitoneal dose of Me-Trp (Me-Trp), anti-PD-1, and Me-Trp and anti-PD-1 combined mice groups and 
analyzed on day 14. Relative MFI of surface PD-1 and percentage of PD-1+ cells were measured by flow cytometry. n=10, 
mean±SD.
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To generalize the tumor growth inhibition effects of 
tryptophanylation by downregulating PD-1 and acti-
vating T cells, we examined tryptophan-supplemental 
effects on tumor growth of B16F10 melanoma cells under 
with and without PD-1 antibody injection. Tryptophan 
decreased the growth of B16F10 tumor cells (figure 7K) 
and decreased surface PD-1 levels in both spleen and TIL 
CD8+ T cells (figure  7L,M), suggested that tryptophan 
supplemental inhibits growth of cancer cells regardless 
of their origins. Moreover, although both tryptophan 
and PD-1 antibody caused tumor regression, tryptophan 
exerted a potency to inhibit tumor growth in mice treated 
with PD-1 antibody (figure 7K-M). The synergistic effects 
of PD-1 antibody and tryptophan supported that trypto-
phan exerts its antitumor effects through inhibiting PD-1.

DISCUSSION
The unveiling of protein aminoacylation19 has opened 
new angles for investigating the biological processes 
and regulatory roles of amino acids. The immune cell 
suppression by tryptophan has been often attributed to T 
cell suppression by tryptophan catabolites. In the current 
study, we provided evidence at various levels to show that 
tryptophan accumulation may also account for IDO inhib-
itors’ immunity boosting efficacies because tryptophan is 
a T cell activator. Tryptophan activates T cells by downreg-
ulating their inhibitory protein PD-1 expression via the 
WARS-TRIP12-NFATc1-PD-1 axis. WARS tryptophanylates 
and activates TRIP12, an E3 ligase of the transcription 
factor NFATc1 that positively regulates PD-1 expression 
to activate T cells, and tryptophan-activated T cells can 
be inhibited by SIRT1, which de-tryptophanylates Trp-
K1136 and reverses consequences of TRIP12 tryptopha-
nylation. These results unveiled that tryptophan activates 
T cells through lysine tryptophanylation, while its catabo-
lites inhibit T cells via other mechanisms (online supple-
mental figure S8). Therefore, IDO suppresses immunity 
by producing tryptophan catabolites and by decreasing 
tryptophan levels and IDO inhibitors activate immunity 
by reversing these two consequences.

Mounting documented studies supported our findings. 
Tryptophan levels are positively associated with immu-
nity, as IFN-γ-enhanced tryptophan catabolism to deplete 
tryptophan exerts immune repression, although this 
efficacy was mainly explained by the fact that increases 
of the levels of tryptophan catabolites, such as quino-
linic acid and 3-hydroxyanthranilic acid, can inhibit the 
proliferation of immune cells and promote their apop-
tosis.14 37–42 WARS levels are positively correlated with T 
cell activation and are consistent with our model. CD8+ 
T cells with increased WARS expression are able to main-
tain their activation status.43 44 In immune thrombocyto-
penia, decreased IDO expression and increased WARS 
expression in CD4+ and CD8+ cells have been proposed 
to enhance the survival of autoreactive T cells.45 Consis-
tent with such hypothesis, cancer cells overexpress IDO6 
to create a microenvironment that has both decreased 

tryptophan and increased tryptophan catabolites to avoid 
activation of T cells. In patients with rheumatoid arthritis, 
the increased expression of WARS mRNA may be a cause 
of CD3+ T cell activation.46 In several cancers, including 
gastric adenocarcinoma, and colorectal and ovarian 
cancers, high levels of WARS expression are associated 
with a favorable prognosis,47–49 likely due to the fact that 
WARS is a secretable protein which is rapidly secreted 
in response to viral infection,50 and elevated circulating 
WARS may increase tryptophanylation levels and activate 
T cells, favoring tumor immune elimination. Further-
more, SIRT1 inhibitor sirtinol treatment in infected mice 
decreased their spleen parasite burden, and PD-1 inhib-
itor showed a synergistic effect,51 supporting that SIRT1 
inhibition would phenocopy tryptophan and IDO inhib-
itor to activate immunity. All these observations may be 
explained by the activation of T cells by tryptophanylation 
as proposed and demonstrated in this study, although 
they were initially explained by various mechanisms.

Both physiological tryptophan and its catabolites are 
low, with tryptophan at 10–100 µM and kynurenine at 
5–50 µM.12 Therefore, although IDO inhibitors can 
increase tryptophan and decrease tryptophan catabo-
lites, both result in T cells activation, their clinical anti-
cancer efficacies are suboptimal, likely due to that IDO 
inhibitors can hardly vary levels of tryptophan and tryp-
tophan catabolites to extent big enough to exert suffi-
cient immunity-boosting power. We showed that Me-Trp 
supplemental increased intracellular tryptophan levels 
and tryptophan catabolites, and activated CD8+ T cells, 
suggesting that the opposite effects of tryptophan and 
its catabolites are dependent on the relative intracellular 
concentrations. This can be explored in IDO inhibitor 
cancer therapy. Tryptophan supplemental in combination 
with IDO inhibitor, which may greatly increase intracel-
lular tryptophan levels while keeping tryptophan catab-
olites at low levels, had much stronger ability to prevent 
cancer growth. Moreover, because tryptophan activates 
T cells by decreasing PD-1 expression, a combination of 
tryptophan, IDO inhibitors, and PD-1 antibodies would 
be expected even more powerful strategy to fight against 
cancer.
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