Graphical abstract

GD2-directed bispecific trifunctional antibody outperforms dinutuximab beta in a murine model for aggressive metastasized neuroblastoma

![Diagram showing the interaction between T cell, Neuroblastoma cell, and Accessory immune cell (AIC) involving GD2, CD3, FcγR, TRBs011, lysis/apoptosis, CDC, MAC, ADCC/Phagocytosis, and EKTOMUN.]

Abbreviations: ADCC: antibody dependent cellular cytotoxicity; AIC: accessory immune cells; CD: cluster of differentiation; CDC: complement dependent cytotoxicity; GD2: disialoganglioside 2; FcγR: Fc-gamma-Receptor; IgG: immunoglobulin G.

Authors: Felix Zirngibl, Sara M Ivasko, Laura Grunewald, Anika Klaus, Silke Schwiebert, Peter Ruf, Horst Lindhofer, Kathy Astrahansteff, Lena Andersch, Johannes H Schulte, Holger N Lode, Angelika Eggert, Kathleen Anders, Patrick Hundsdörfer and Annette Künkele

Correspondence: felix.zirngibl@charite.de

In Brief: T cells are redirected to and activated at GD2 positive neuroblastoma cells by bispecific trifunctional antibody EKTOMUN. In addition, the Fc-region of bispecific trifunctional antibodies interacts simultaneously or subsequently with Fc-gamma receptor positive accessory immune cells such as natural killer cells, macrophages or dendritic cells and thus provide a co-stimulatory signal to activate T cells. In this way, tumor cells can be effectively eradicated by a combined action of T cells and accessory immune cells expoliting different mechanisms, such as antibody dependent cellular cytotoxicity (ADCC), phagocytosis, or perforin/granzyme-mediated lysis and apoptosis induction. The primary mode of action of the monoclonal antibody ch14.18 is either mediating ADCC or inducing the formation of a membrane attack complex (MAC) via complement activation.