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profiles were evident in ID8 cells treated ex vivo with 
TG2-/- versus TG2+/+ ascites (online supplemental figure 
S10B) with the top enriched pathways in TG2-/- versus 
TG2+/+ ascites-treated cells being Cholesterol Biosynthesis 
and Immune Response (online supplemental figure S10C, 

online supplemental tables S4,5) similar to the transcrip-
tomic profiles of cancer cells isolated from ascites. While 
we suspected that secreted factors in ascites were respon-
sible for the observed changes, no significant differences 
in IL-6 and IFN-γ concentrations were detected in ascites 

Figure 8  Effects of tissue transglutaminase (TG2) expressed in the tumor microenvironment (TME) on tumor cells. (A) 
Representative fields showing IHC staining for TG2 and CD8 in human OC specimens on a tissue microarray (TMA) (n=84). 
Representative paired specimens show TG2 and CD8 expression in tumors with low (left) and high (right) stromal TG2 
expression. Stroma is delimited by white dashed contours and CD8+ T cells are indicated by red circles. Insets depict the 
whole TMA spots. (B) Indirect correlation between stromal TG2 expression level and level of intratumoral CD8+ T cell infiltration 
(*p=0.0217, r=−0.2487). (C) Unsupervised hierarchical clustering shows gene expression profiles measured by RNAseq in 
sorted EpCAM+ cells from ascites of TG2-/- and TG2+/+ mice inoculated with ID8 cells (n=3 specimens per group). (D, E) 
Enriched pathways upregulated (F) or downregulated (E) in sorted EpCAM+ cells from ascites of TG2-/- versus TG2+/+ mice. 
The bar chart illustrates the number of differentiated genes on each pathway, the ratio of the number of differentiated genes 
to the total number of genes known on the pathway, and the p value of the Fisher test. (F) Representation of the fold change 
(FCH) for the genes associated with interferon, with different shades of red as they were upregulated, the intensity of the color 
representing the magnitude of fold change; petals are arranged according to the fold change. (G) Colony formation assay for 
ID8 cells cultured in media containing ascites pooled fromTG2+/+ or TG2-/- mice (n=8). (H) Flow cytometry using Annexin V/7AAD 
double labeling quantifies apoptosis in ID8 cells treated with ascites pooled from TG2+/+ or TG2-/- mice. Data are represented as 
means ± SEM (*p<0.05; **p<0.05; ***p<0.001; ****p<0.0001).
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collected from TG2-/- versus TG2+/+ tumor-bearing mice 
(online supplemental figure S10D). In all, the data 
support that when TG2 is absent in the peritoneal TME, 
tumor cells are less likely to survive and undergo apop-
tosis, due to enhanced immune surveillance.

DISCUSSION
We describe a previously unappreciated function of TG2 
as an attenuator of antitumor immunity. In parallel to 
significant decrease in tumor burden detected in OC 
syngeneic models, increased numbers of active cytotoxic 
lymphocytes differentiated toward an effector pheno-
type were observed in malignant ascites collected from 
TG2-/- mice compared with controls. TG2 knockout, or 
its enzymatic inhibition in CD8+ T cells, led to reduced 
cytokine-induced STAT3 phosphorylation, a known 
inhibitory T cell signal. In all, our studies reveal a new 
mechanism by which TG2 modulates T cell immunity 
and tumor progression in OC models. Our findings have 
several implications.

First, to our knowledge, the effects of TG2 on the 
antitumor immune response have not been previously 
assessed. We had identified TG2 as an adhesion protein 
overexpressed in cancer cells and at their interface with 
the TME and demonstrated its metastasis promoting role 
in this context.4 5 The role of TG2 modulating the behavior 
of cancer cells was also reported in other solid tumors, 
with high levels of the enzyme being generally correlated 
with unfavorable prognosis.11 20 44 50 51 Using genetic 
knockdown models and pharmacological inhibitors, we 
and others have shown that TG2 inhibition blocks cancer 
cell spheroid formation and tumor progression.5 23 52 
However, contradictory results were reported when TG2 
was knocked out in the host. In a subcutaneous syngeneic 
model of melanoma, accelerated tumor progression was 
observed in TG2-/- mice53 through a mechanism depen-
dent on lack of stroma crosslinking and stimulation of 
angiogenesis induced by deficiency of the active enzyme. 
In another report, accelerated melanoma progression in 
TG2-/- mice was attributed to the lost interaction between 
TG2 and the G-protein coupled receptor GPR56, with 
tumor suppressor functions.54

By conducting immune profiling of cells recovered 
from the ascites of TG2+/+ and TG2-/- tumor-bearing 
mice, here we describe the impact of TG2 on the peri-
toneal immune cell populations and their functions in 
OC. Our results demonstrating increased accumulation 
and enhanced effector function of CD8+ and CD4+ cells 
in TG2-/- mice-bearing ovarian tumors are consistent 
with the known phenotype of these mice, which display 
increased auto-immunity with age25 and clear infec-
tions, such as M. tuberculosis, more effectively.26 In those 
contexts, however, the role of TG2 was linked to the defi-
cient function of macrophages clearing apoptotic bodies 
or mycobacteria, with limited evaluation of the T cell 
function. TG2 was shown recently to facilitate the interac-
tion between dendritic cells and T cells leading to more 

potent responses to antigen stimulation.27 Interestingly, 
here we detected an increase in the T effector/memory 
(Tem) pool in the ascites recovered from TG2-/- mice, 
as well as a propensity of the CD8+ T cell fraction from 
the spleens of TG2-/- naïve tumor-free mice to differen-
tiate toward a Tc1 fate. It had been established that in 
the context of antitumor immune response, Tem cells 
exhibit rapid effector function, readily differentiating 
into IFN-γ secreting T effector cells (Teff) with enhanced 
cytotoxicity.55 It is possible that complete deficiency of the 
enzyme in the knockout animal creates a more vulnerable 
state, which is compensated through other mechanisms, 
such as enhanced immune responses. Additionally, we 
noted an increase in TG2 expression level in human acti-
vated CD8+ T cells compared with inactive cells, based on 
bioinformatic analyses, corroborating our findings from 
animal experiments. Lastly, IHC of human OC specimens 
showed a negative correlation between TG2 expression 
in the stroma of ovarian tumors and intratumoral CD8+ T 
cell infiltration, further supporting the proposed concept.

Second, we found that absence of TG2 attenuates STAT3 
phosphorylation in CD8+ and CD4+ T cells in response 
to IL-6, IFN-γ, and TGF-β, cytokines abundantly secreted 
in the peritoneal microenvironment.22 56 To analyze JAK-
STAT intracellular signaling, we used phospho-flow, a 
highly sensitive technique,57 and observed that STAT3, 
but not STAT1 or STAT5, was less responsive to cyto-
kine stimulation in T cells collected from the ascites of 
TG2-/- mice. The distinction between immune responses 
that suppress and promote cancer is regulated by the 
STAT family members. In particular, STAT1 activation 
leads to enhanced TH1-type responses and CD8+ T cell-
mediated cytolytic activity, which is often antagonized by 
STAT3.58–60 STAT3 has emerged as a critical regulator for 
CD8+ T-cell cytotoxic capacities and their tumor infiltra-
tion.61 62 STAT3 depletion in CD8+ T cells was shown to 
alter the cross-talk between effector T cells and myeloid 
cells through IFNγ/CXCR3/CXCL10 axis, resulting 
in efficient accumulation of CD8+ T cells in the tumor 
milieu.63 Activation of STAT3 in antigen presenting 
cells caused impaired antigen-specific T cell responses, 
while its depletion decreased T cell anergy.64 In the 
TME, STAT3 activation was shown to alter the balance 
between IL-23 secretion from TAMs and IL1-2 produc-
tion from dendritic cells, leading to decreased antitumor 
immunity.65 However, STAT3 was also shown to play an 
important role preserving the T memory cell function by 
sustaining the expression of ‘pro-memory’ transcription 
factors.66 STAT3 ablation in CD8+ T cells prior to adop-
tive transfer allowed efficient in vivo tumor infiltration 
and robust proliferation, resulting in increased tumor 
antigen-specific T-cell activity and tumor growth inhibi-
tion in melanoma and renal cell carcinoma.61 The effects 
of TG2 on STAT3 signaling have been previously unex-
plored. A single report noted that TG2 affected IL-6/
Stat3 signaling in mantle cell lymphoma cells, decreasing 
autophagy.67 Our experiments using TG2 inhibitors 
which inactivated STAT3 in CD8+ T cells suggest that the 
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enzymatic function of the protein may be important for 
regulating this pathway. These data suggest that thera-
peutic interventions targeting TG2 have the potential to 
tip the balance of STAT1/STAT3 to augment antitumor 
CD8+ T cell immunity.

Third, we observed significant changes in the tran-
scriptomic profiles of cancer cells generating tumors in 
TG2-/- mice and of tumor cells treated ex vivo with TG2-

/- ascites, including significant increase in IFN-γ response 
genes and alterations of Cholesterol Synthesis and Antigen 
Presentation pathways. Upregulation of IFN responsive 
genes (Iigp1, Irgm2, Igtp, Ifi44, STAT1, and others) reflects 
that cancer cells in the peritoneal milieu of TG2-/- mice 
respond to the IFN-γ attack initiated by activated CD8+ T 
cells. IFN-γ was the top upstream regulator in the gene 
network differentially expressed in cancer cells grown in 
TG2-/- versus control mice. Further, Cholesterol Synthesis 
was found to a consistently upregulated pathway in 
cancer cells recovered from TG2-/- ascites. Recent data 
suggest that cholesterol derivatives in tumor cells could 
regulate immune recognition and the activity of immune 
cells in the TME.68 Cholesterol is a key element of lipid 
rafts, which contain among other receptors, major histo-
compatibility complex molecules and toll like receptors, 
perhaps facilitating immune recognition of cancer cells. 
A proinflammatory TME like the conditions observed 
in the TG2-/- peritoneal milieu was shown to upregulate 
cholesterol synthesis in liver cancer models.69 It is also 
possible that under the attack of cytotoxic T cells in the 
TG2-/- environment, OC cells upregulate lipid metabolic 
pathways as an escape survival mechanism.

Lastly, we detected fewer MDSCs and TAMs in the 
peritoneal microenvironment of TG2-/- mice compared 
with controls, suggesting that the milieu of tumors devel-
oping in these animals is less immunosuppressive. TG2 
was shown to be enriched in M2 monocytes,70 as we 
also found here through bioinformatic exploration of a 
public database. These findings may explain the decrease 
in number of cells of monocytic lineage being attracted 
to the TME in TG2-/- animals. Interestingly, presence of 
PD-L1–expressing dendritic cells and macrophages is 
recognized as a factor contributing to tumor immune 
tolerance and is emerging as a potential predictor of 
response to immune checkpoint inhibitors in OC and 
other models.71 The observations that PD-L1 expression 
on myeloid cells is reduced in a TG2 null context could 
fuel speculations that TG2 blockade may be investigated 
as a potential modality of blocking this immune inhibi-
tory pathway.

In summary, here we describe a new role of TG2 regu-
lating the host antitumor response by altering the effector 
function of CD8+ T cells and reducing the immunosup-
pressive myeloid cell populations in the peritoneal envi-
ronment of tumor-bearing mice. Mechanistically, we show 
that absence of TG2 caused dampened STAT3 signaling 
in response to local cytokines in CD8+ and CD4+ T cells. 
We propose TG2 as a novel molecular target for manip-
ulating immune activation/tolerance in the context of 

cancer. Our studies have implications for understanding 
autoimmunity, antitumor immunity, and perhaps, for 
refining cancer immunotherapy.
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