Background Neoantigens (neoAg) identification, which determines T-cell responses against tumors, has fostered the development of personalized vaccines with promising results. While the ranking of the most immunogenic neoAg can be addressed using predictive techniques, their formulation as vaccines needs to be improved. To maximize their therapeutic potential, optimal neoAg-based vaccines should be manufactured in a super delivery platform that enhances robust new immune responses, able to bypass thymic tolerance and the humoral immunosuppressive microenvironment. These novel T cell responses generated at the periphery will not be exhausted, opposite to TILs. We aim to develop a highly immunogenic vaccine platform, based on engineered HIV-derived Virus-Like Particles (VLP) expressing approximately 2500 copies of each selected neoAg. We tested different neoAgs loaded VLPs (neoVLP) in a melanoma mouse model to evaluate their capability to generate new immunogenic specificities.

Material and Methods Specific non-synonymous mutations from B16F10 cells were identified, selected and used to generate a list of prioritized peptides. NeoAgs were classified as: Tier1, acquiring a mutation that creates an anchor residue to the MHC-I, not present in the WT peptide; Tier2, acquiring a mutation in the TCR contact region but inducing a less drastic change than in Tier1; and Tier3, acquiring a mutation in the TCR respect to WT; and Tier3, acquiring a mutation in the TCR contact region but inducing a less drastic change than in Tier1; and Tier3, acquiring a mutation in the TCR contact region but inducing a less drastic change than in Tier1; and Tier3, acquiring a mutation in the TCR contact region but inducing a less drastic change than in Tier1; and Tier3. Frame shift (FS) mutations, expected to be highly immunogenic, could be an alternative to current therapeutic vaccine approaches and a promising candidate for future personalized immunotherapy.

Results We have successfully generated and purified neoVLPs, exposing neoAgs from all groups by transient transfection of Exp293 cells. Protein integrity and VLP morphology were confirmed by western blot and cryo-EM. When used for immunization assays, neoVLPs, containing neoAgs from Tier2, Tier3 and FS groups, were capable of generating humoral responses against viral proteins and T cell responses against neoAgs present in the neoVLP. B16F10 inoculated animals, but not vaccinated, did not develop detectable T cell responses against neoAgs present in any tested neoVLP, suggesting that the vaccination with neoVLPs promoted new specificities against selected neoAgs that might contribute to tumor control and eradication.

Conclusion Our data show that the neoVLPs promote the generation of new antitumor-specific immune responses against selected neoepitopes, suggesting that neoVLPs vaccination could be an alternative to current therapeutic vaccine approaches and a promising candidate for future personalized immunotherapy.