Background Currently ~50% of patients with the diagnosis of high-risk neuroblastoma will not survive due to relapsing or refractory disease. Recent innovations in immunotherapy for solid tumors are highly promising, but the low MHC-I expression of neuroblastoma represents a major challenge for T cell-mediated immunotherapy. Here, we propose a novel T cell-based immunotherapy approach for neuroblastoma, based on the use of TEG002, a ββ-T cells engineered to express a defined γδ-T cell receptor, which are thought to recognize and kill target cells independent of MHC-I. In this pilot project we have tested the potential efficacy of TEG002 therapy as a novel treatment for neuroblastoma, with tumor organoids.

Materials and Methods Effector cells were created from healthy donor peripheral blood T cells. The TEG002 cells were engineered by transducing ββ-T cells with a defined Vγ9Vβ82-T cell receptor. Both the untransduced ββ-T cells and the endogenous Vγ9Vβ82-T cells from the same healthy donor were used as controls in all experiments. Activation and killing of TEG002 was tested in a co-culture setting with neuroblastoma organoids. Supernatant of the co-culture was collected at 24 hours for IFNγ ELISA to measure activation of TEG002. The dynamics of cytotoxicity were analyzed over time from 0 till 72 hours, using the live-cell imaging system Incucyte from Sartorius®. Killing was quantified using a Caspase3/7 Green dye and the Incucyte software. Transcriptional profiling of the neuroblastoma organoids was done by RNA sequencing and MHC-I expression of the neuroblastoma organoids was determined by flow cytometry.

Results We showed that 3 out of 6 neuroblastoma organoids could activate TEG002 as measured by IFNγ production. Transcriptional profiling of the neuroblastoma organoids showed that this effect correlates with an increased activity of processes involved in interferon signaling and extracellular matrix organization. Analysis of the dynamics of organoid killing by TEG002 over time confirmed that organoids which induced TEG002 activation were efficiently killed independently of their MHC-I expression. Of note, efficacy of TEG002 treatment was superior to donor-matched untransduced ββ-T cells or endogenous γδ-T cells.

Conclusions We demonstrated that ~50% of tested neuroblastoma organoids can effectively activate TEG002 and that killing of the organoids is independent of MHC-I expression. Hence, this pilot study identified TEG002 as a promising novel cellular product for immunotherapy for a subset of neuroblastoma tumors, warranting further investigations into its clinical application.

Disclosure Information J.G.M. Strijker: None. E. Drent: A. Employment (full or part-time); Significant; Gadeta BV. J.J.F. van der Hoek: None. R. Pscheid: A. Employment (full or part-time); Significant; Gadeta BV. B. Koopmans: None. K. Ober: None. S.R. van Hooft: None. W.M. Khlososy: None. C. Coomans: A. Employment (full or part-time); Significant; Gadeta BV. A. Bisso: A. Employment (full or part-time); Significant; Gadeta BV. M. van Loenen: A. Employment (full or part-time); Significant; Gadeta BV. J.J. Molenaar: None. J. Wienke: None.
and patients with HCC and BCA the lowest proportion (40.0%).

Conclusions The observed findings underline the importance of TLS as a novel biomarker and a possible association to cellular responses may even enhance their prognostic value. Our planned analyses of combined humoral immune responses will further elucidate the role of TLS in anti-tumor immune response of the analyzed cancer types. A combined targeting of a pre-defined or personalized set of included TAAs appears promising across the different cancer types.

Disclosure Information E. Preugszat: B. Research Grant (principal investigator, collaborator or consultant and pending grants as well as grants already received); Modest; Koeln Fortune Program, Faculty of Medicine, University of Cologne. M. Thelen: None. M. García-Marquez: None. J. Lehmann: None. D. Keller: None. M. von Bergwelt-Baildon: Other; Modest; Honoraria for advisory boards, for invited talks from BMS and financial support for research projects from Astellas, Roche and MSD. H.A. Schlößer: Other; Significant; Financial support for research projects from Astra Zeneca.

P06.03 BISPECIFIC ANTIBODY-DRIVEN SYNTHETIC AGONISTIC RECEPTOR ENGINEERED T CELLS LEAD TO SPECIFIC AND CONDITIONAL THERAPY IN MELANOMA CANCER MODELS

M Benmebarek*, ¹F Märkl, ¹J Keyl, ¹B Loureiro Cadilha, ²M Geiger, ³C Karches, ⁴S Endres, ⁵C Klein, ⁶S Kobold, ⁷A Klüver, ⁸M Schwerdtfeger. ¹Center of Integrated Protein Science Munich (CPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Munich, Germany; ²Roche Innovation Center Zurich, Schlieren, Switzerland

10.1136/jitc-2021-ITOC8.37

Background Immunotherapeutic approaches, including immune checkpoint blockade and adoptive T cell therapy (ACT) in the form of tumor-infiltrating lymphocytes (TIL), have had marked success in the treatment of melanoma. Despite these successes, many patients are refractory to treatment or relapse with therapy-resistant disease. To overcome said limitations, we propose a controlled ACT approach, where T cells are armed with synthetic agonistic receptors (SAR) that are conditionally activated only in the presence of a target melanoma-associated antigen, and a cross-linking bispecific antibody (BiAb) specific for both SAR T cell and tumour cell.

Materials and Methods A SAR composed of an extracellular EGFRvIII, trans- membrane CD28, and intracellular CD28 and CD3ζ domains was fused via overlap- extension PCR cloning. T cells were retrovirally transduced to stably express our SAR construct. We validated our approach in two murine as well as two human cancer models expressing our melanoma-associated target antigens TYRP (murine) and MCSP (human). We confirmed conditional and specific stimulation and proliferation of our T cells, as well as their tumour-antigen-directed cytotoxicity, in vitro and in vivo.

Results Crosslinking TYRP-EGFRvIII (murine) and MCSP-EGFRvIII (human) BiAb, monovalently selective for our SAR, induced conditional antigen-dependent activation, proliferation of SAR-T cells and directed tumour cell lysis with specificity towards two TYRP-expressing murine melanoma and two MCSP-expressing human melanoma cancer models. In vivo, anti-tumoural activity was mediated by the co-administration of SAR-T cells and BiAb, in A375 and MV3 melanoma xenograft models. Further, we could show that SAR T cells exhibited resistance to MDSC-induced suppression of activation and proliferation.

Conclusions Here we apply the SAR x BiAb approach in efforts to deliver specific and conditional activation of SAR transduced T cells, and targeted tumour cell lysis. The modularity of our platform is key for a targeting approach in a tumor entity with a high mutational load such as melanoma and is fundamental in our drive towards personalised immunotherapies. Further, the SAR approach has demonstrated resistance to MDSC-induced suppression, an interesting axis that requires further investigation.


P06.04 TRANSCRIPTOME-WIDE NETWORK ANALYSIS PREDICTS THE ROLE OF LACTATE DEHYDROGENASE C IN BREAST CANCER CELL SURVIVAL AND IMMUNE DYSFUNCTION

A Naik*, J Decock, Qatar Biomedical Research Institute, Doha, Qatar

10.1136/jitc-2021-ITOC8.38

Background Cancer testis antigens (CTAs) are lucrative anti-cancer targets given their restricted expression patterns and known roles as mediators of cancer hallmarks, including cancer metabolism, proliferation, survival, and cell motility. Lactate dehydrogenase C (LDHC) is a CTA with upregulated expression in poor prognosis subtypes of breast cancer, however its tumorigenic role is less understood. We recently reported that silencing LDHC reduces breast cancer cell survival through a dysregulated DNA damage response, thus highlighting its potential as an anti-cancer target with limited off-target effects. This study aimed to explore the changes in the transcriptome of breast cancer cells and immune-related mediators upon in vitro LDHC targeting.

Materials and Methods We silenced LDHC expression in breast cancer cell lines and investigated the downstream effects on the tumor cell transcriptome. Differentially expressed genes were subjected to regulatory network analyses. We further assessed the secretory profile of cytokines and immune checkpoint expression in LDHC-silenced cells and used the Tumor Immune Dysfunction and Exclusion (TIDE) algorithm to determine the effect of the interaction between LDHC expression and cytotoxic T lymphocyte (CTL) infiltration in the METABRIC breast cancer cohort.

Results Network analysis to investigate the effects of silencing LDHC on the tumor cell transcriptome identified 47 up- and 55 down-regulated transcripts (2.0-fold change, adj p<0.05). Differentially expressed genes in the LDHC-silenced cells were particularly enriched in canonical pathways regulating cell cycle checkpoint control, BRCA1-mediated DNA damage response and NF-kb signaling in response to infection. Upstream regulator analyses revealed the altered expression profile was associated with mTOR (p=1.27e-5, z=2.242) and CASP3 (p=3.2e-4, z=2.250) pathways, which in the presence of LDHC are predicted to activate TP53, Myc, NF-KB complex, STAT1/3, PRKC, CDK2, FOXO3 and HIF-1α while...