Background: Adoptive cell therapy with tumor-infiltrating lymphocytes (TILs) has demonstrated tremendous promise in clinical trials for patients with solid or metastatic tumors. However, current TIL therapy requires systemic administration of IL-2 to promote TIL survival, and IL-2-associated toxicities greatly limit patient eligibility and reduce the long-term clinical benefit of TIL therapy. Unlike IL-2, which promotes T cell exhaustion, IL-15 maintains antigen-independent TIL persistence through homeostatic proliferation and supports CD8+ T cell anti-tumor activity without stimulating regulatory T cells. We designed genetically engineered TILs to express a regulated form of membrane-bound IL-15 (mbIL15) for tunable long-term persistence, leading to enhanced efficacy and safety for the treatment of patients with solid tumors.

Methods: Obsidian’s cytoDRiVE™ platform includes small human protein sequences called drug responsive domains (DRDs) that enable regulated expression of a fused target protein under control of FDA-approved, bioavailable small molecule ligands. cytoTIL15 contains TILs engineered with mbIL15 under the control of a carbonic-anhydrase-2 DRD, controlled by the ligand acetazolamide (ACZ). After isolation from tumors, TILs were transduced and expanded in vitro through a proprietary TIL expansion process. cytoTIL15 were immunophenotyped and assessed for in vitro antigen-independent survival and co-cultured with tumor cells to assess polyfunctionality and cytotoxicity. In vivo TIL persistence and anti-tumor efficacy was evaluated through adoptive transfer of TILs into immunodeficient NSG mice, either naïve or implanted with subcutaneous patient-derived-xenograft (PDX) tumors.

Results: cytoTIL15 and conventional IL2-dependent TILs isolated from melanoma tumor samples expanded to clinically relevant numbers over 14 days. Throughout expansion, cytoTIL15 were enriched for CD8+ T cells and acquired enhanced memory-like characteristics, while maintaining diverse TCRVβ sub-family representation. cytoTIL15 demonstrated enhanced potency over conventional TILs, as measured by increased polyfunctionality and cytotoxicity against tumor and PDX lines in vitro (figure 1A). In a 10-day antigen-independent in vitro assay, cytoTIL15 persisted at greater frequencies than conventional TILs in the absence of IL-2 (figure 1B; *p<0.05). cytoTIL15 adoptively transferred into naïve NSG mice demonstrated ACZ-dependent long-term persistence without antigen or exogenous IL-2, whereas conventional TILs were undetectable >30 days following adoptive cell transfer (figure 1C). Importantly, cytoTIL15 achieved significant tumor control in a human PDX model (figure 1D), which correlated with increased TIL accumulation in secondary lymphoid organs.

Conclusions: Taken together, the superior persistence and potency of cytoTIL15 in the complete absence of IL-2 highlights the clinical potential of cytoTIL15 as a novel TIL product with enhanced safety and efficacy for patients with melanomas, and other solid tumors.

Acknowledgements: The authors wish to acknowledge the Cooperative Human Tissue Network for their supply of human tumor tissue, and the MD Anderson Cancer Center for technical support; schematic created with BioRender.com.