Background Anti-CTLA-4 antibodies have brought about limited clinical benefit because severe toxicity limits dosing levels and/or duration. We used CTLA-4 knockin mice to screen for antibodies with higher anti-tumor activity but lower autoimmune. We have revealed that the key for better safety and preclinical efficacy is preservation of CTLA-4 for immune tolerance and intratumorial Treg depletion. Our work established that, independent of blocking activities, mAbs that preserve CTLA-4 recycling maintain the physiological immune tolerance checkpoint function while allowing more efficient and selective elimination of tumor-infiltrating regulatory T cells, resulting in highest efficacy and lowest toxicity and was thus developed for clinical testing of all antibodies tested. The antibody with best safety and efficacy profile, ONC-392 was developed for clinical testing. The first-in human studies showed that ONC-392 is safe and well tolerated. Remarkably, no irAE has been reported among patients who has received repeated dosing of 3.0 mg/kg and 10.0 mg/kg of ONC-392. The molecular and cellular characterization of ONC-392 will be presented.

Methods In vitro binding and disassociation assay were determined between pH 4.0–7.0. The intracellular traffic of both antibodies and CTLA-4 molecules were visualized by confocal microscopy. The binding to human and mouse FcγRI, IIA, IIB, and III (A), FcRn as well as mouse FcγRIV were evaluated by surface plasmon resonance (SPR). Depletion of regulatory T cells in tumor and lymphoid tissues were determined by flow cytometry.

Results ONC-392 is a pH-sensitive antibody that preserves CTLA-4 recycling. By preserving cell surface CTLA-4, OncoC4 preserves immune tolerance. Preserving CTLA-4 on tumor-infiltrating Treg contribute to more effective immunotherapy. In addition to its unique feature of pH sensitive binding, OncoC4 also have several important features in Fc. ONC-392 shown comparable binding to human FcγRI and IIA, IIB, and III (A), FcRn as well as mouse FcγRIV were evaluated by surface plasmon resonance (SPR). Depletion of regulatory T cells in tumor and lymphoid tissues were determined by flow cytometry.

Conclusions Unlike other clinical anti-CTLA-4 antibodies, ONC-392 preserves CTLA-4 recycling and thus Treg function in the peripheral tissues. The higher cell surface CTLA-4 allows more efficient Treg depletion in the tumor microenvironment. In addition, despite reduced binding to mouse activating FcγRII, III/IV, ONC-392 was more effective in intratumoral Treg depletion in the mice. Therefore, lacking negative signaling from FcγRIIB may also contribute to its anti-tumor activity.

Trial Registration NCT04140526

REFERENCES