HUMAN PD-L2 TRIGGS A UNIQUE T CELL INHIBITORY PROGRAM THROUGH PD-1 ENGAGEMENT DISTINCT FROM THAT OF PD-L1

Anupallavi Srinivasamani*, 1Michael Curran, 1Qinying Liu, 1Shwetha Hegde, 1Chao-Hsien Chen, 1Kimal Rajapakshe, 1Cristian Coarfa. 1University of Texas MD Anderson Cancer Center, Houston, TX, USA; 2Fudan University, Shanghai, China; 3Baylor College of Medicine, Houston, TX, USA

Background PD-L1/PD-L1 blockade is responsible for the majority of the success of cancer immunotherapy. However, only 14% of patients eligible to receive checkpoint blockade achieve objected clinical responses.


Results We validated that human PD-L2, unlike murine PD-L2, generates a purely co-inhibitory signal in human T cells, albeit with a reduced inhibitory potential relative to PD-L1. We discovered significant differences in downstream T cell signaling pathways generated by PD-L1 versus PD-L2 through PD-L1 engagement. Human PD-L1 and PD-L2 differentially modulated T cell effector function and proliferation with PD-L2 preferentially arresting T cells in S-phase of cell cycle. PD-L1 and PD-L2 also differed in the temporal kinetics of dephosphorylation of the membrane proximal proteins in the TCR-CD3 signaling complex. We observed that combination blockade of PD-L1 and PD-L2 improves on blockade of PD-L1 alone resulting in increased production of IL-2 and IFNγ in primary human mixed lymphocyte reactions. Our data in a syngeneic murine model of EL4 showed that effector-function capable PD-L2 blocking antibodies are therapeutically superior to PD-L1 or PD-L2 blockade alone.

Conclusions We are the first to report on T cell immunoregulatory functions of PD-L2 which are distinct from those of PD-L1, and demonstrate that the more tumor-selective expression pattern of PD-L2 relative to PD-L1 provides a therapeutic advantage to effector-function capable PD-L2 antibodies.

Acknowledgements AS was supported by the CPRIT Research Training Grant(RP170067)

REFERENCES

http://dx.doi.org/10.1136/jitc-2021-SITC2021.233