614 INVESTIGATING IMMUNE MEDIATED MECHANISMS OF PARPI RESISTANCE IN BRCA1-ASSOCIATED TRIPLE NEGATIVE BREAST CANCER (TNBC)

¹Anita Mehta, ¹Madeline Townsend, ¹Madisson Oliwa, ²Patrice Lee, ²Nicholas Saccomano, ³Filipa Lynce, ³Geoffrey Shapiro, ¹Elizabeth Mittendorf, ¹Jennifer Guerriero*. ¹Brigham and Women's Hospital, Boston, MA, USA; ²Pfizer, Boulder, CO, USA; ³Dana-Farber Cancer Institute, Boston, MA, USA

Background Poly(ADP-ribose) polymerase inhibitors (PARPi) have improved the outcomes of BRCA-associated breast cancer; however, treatment responses are often not durable. Our preclinical studies demonstrated that PARPi activates the cGAS/STING pathway and recruitment of anti-tumor CD8+ T-cells that are required for tumor clearance [1]. These studies contributed to development of clinical trials testing PARPi plus immune checkpoint blockade (ICB). Unfortunately, early phase trials of PARPi + ICB have not yet suggested efficacy will be superior to PARPi monotherapy. Lack of demonstrated clinical synergy between PARPi + ICB underscores the need to study the tumor microenvironment (TME) during PARPi therapy to identify optimal strategies to enhance T-cell activation. We recently showed that PARPi induces CSF-1R+ suppressive tumor associated macrophages (TAMs) that restrict antitumor immune responses, contributing to PARPi resistance [2]. Removing TAMs with anti-CSF-1R therapy in combination with PARPi significantly enhanced overall survival (OS) compared to PARPi monotherapy in preclinical models [2]. Here, we investigate how modulating TAMs can enhance PARPi + ICB.

Methods Mice bearing BRCA1-deficient TNBC (K14-Cre; Brca1f/f;p53f/f) tumors were treated for 98 days with PARPi (Talazoparib) \pm small molecule inhibitor of CSF-1R (ARRAY-382; CSF-1Ri) \pm anti-PD-1 and then followed for survival. Flow cytometry was employed to elucidate changes in the TME after treatment.

Results PARPi conferred a significant survival advantage over vehicle treated mice (median OS 33 v. 14 days; p=0.0034) and 2/8 PARPi-treated mice experienced complete tumor clearance at day 98. PARPi + CSF-1Ri treated mice (median OS 140 days) remarkably cleared 7/10 tumors by day 98. The addition of anti-PD-1 to PARPi did not enhance OS compared to PARPi monotherapy. The triple combination of anti-PD-1 + PARPi + CSF-1Ri has not yet significantly enhanced the median OS compared to PARPi + CSF-1Ri (ongoing; 168 v. 140 days); nor did it increase clearance of tumor by day 98 (7/10). However, the triple combination led to superior long term tumor clearance. At day 161 the triple combination exhibited 5/10 tumor free mice compared to 2/10 treated with PARPi + CSF-1Ri. To elucidate how CSR-1Ri enhanced PARPi + ICB responses, flow cytometry was performed and revealed increased expression of the co-stimulatory molecule CD80, reduced tissue resident macrophages (CX3CR1+) and lower CSF-1R expression compared to PARPi + ICB.

Conclusions These data suggest that targeting immunosuppressive macrophages may induce a favorable anti-tumor immune response and enhance responses to PARPi plus ICB. We are currently evaluating the adaptive immune response in this context.

REFERENCES

 Pantelidou, C., et al., PARP inhibitor efficacy depends on CD8+ T cell recruitment via intratumoral STING pathway activation in BRCA-deficient models of triple-negative breast cancer. Cancer Discovery, 2019: p. CD-18-1218. Mehta, A.K., et al., Targeting immunosuppressive macrophages overcomes PARP inhibitor resistance in BRCA1-associated triple-negative breast cancer. Nat Cancer, 2021. 2(1): p. 66–82.

http://dx.doi.org/10.1136/jitc-2021-SITC2021.614