REVERSE ABSCOPAL EFFECT: INTERTUMORAL HETEROGENEITY SUPPRESSES SYSTEMIC CD8 T CELL-MEDIATED ANTI-TUMOR IMMUNITY AND CONFERNS PD-1 INHIBITOR RESISTANCE IN SYNCHRONOUS MELANOMA

Shuyang Qin*, Booyeon Han, Alexander Chacon, Alexa Melucci, Alyssa Williams, Rachel Jewell, Minsoo Kim, David Linehan, Scott Geber, Peter Prieto. University of Rochester School of Medicine and Dentistry, Rochester, NY, United States; University of Rochester Medical Center, Rochester, NY, United States

Background Despite recent advancements in systemic therapy, only a minority of metastatic patients develop meaningful clinical responses to immune checkpoint inhibitors. Inherent genetic instability of melanoma generates genomically and microenvironmentally distinct metastases. These different tumor microenvironments (TMEs) contain numerous T cell suppression mechanisms, such as upregulation of the PD-1/PD-L1 exhaustion pathway. However, as synchronous metastases share one host immune system, intertumoral heterogeneity may result in increasing cross-talk between metastases that impairs systemic antitumor immunity and promotes PD-1 immunotherapy resistance.

Methods YUMM 1.7 (less immunogenic) and YUMMER 1.7 (more immunogenic cell line derived from YUMM following UVB irradiation) melanoma cell lines were simultaneously injected into opposite flanks of the same mice as a model of synchronous melanoma. We assessed tumor growth in wild-type, interferon-gamma (IFN-γ) knockout, and CD8-depleted mice as well as in response to PD-1 inhibitor. We characterized the TME with flow cytometry and performed TCR sequencing on tumor-infiltrating CD8 T cells.

Results Distinct TMEs were observed for YUMM and YUMMER tumors simultaneously grown in the same mouse. The presence of the less immunogenic YUMM tumor allows the more immunogenic YUMMER tumors to escape IFN-γ and CD8 T cell-mediated rejection, despite abundant tumor-infiltrating, clonally expanded CD8 T cells. Identical immuno-dominant CD8 T cell clones were found in both YUMM and YUMMER tumors within the same mouse. Synchronous YUMMER-infiltrating CD8 T cells exhibit suppressed phenotypes, including increased persistence of surface PD-1 and decreased surface CD107a expressions. Simultaneously, these synchronous YUMMER tumors additionally upregulate macrophage surface PD-L1 expression, which potentially contributes to tumor immune escape. Lastly, synchronous YUMMER tumors become resistant to PD-1 inhibition, in direct contrast to control YUMMER tumors.

Conclusions In a host with multiple melanoma lesions, immunogenicity of all tumors contribute to the systemic antitumor immune response. We show that two synchronous tumors with synonymous mutations (<40%), as is the case with metastatic patients, lead to skewed CD8 T cell expansion of the same clones in both tumors. The presence of a less immunogenic tumor prevents CD8 and IFN-γ mediated rejection, despite abundant tumor-infiltrating, clonally expanded CD8 T cells. Identical immuno-dominant CD8 T cell clones were found in both YUMM and YUMMER tumors within the same mouse. Synchronous YUMMER-infiltrating CD8 T cells exhibit suppressed phenotypes, including increased persistence of surface PD-1 and decreased surface CD107a expressions. Simultaneously, these synchronous YUMMER tumors additionally upregulate macrophage surface PD-L1 expression, which potentially contributes to tumor immune escape. Lastly, synchronous YUMMER tumors become resistant to PD-1 inhibition, in direct contrast to control YUMMER tumors.

Acknowledgements We would like to thank Dr. Marcus Bosenberg from the Department of Dermatology at Yale University for kindly gifting us with the YUMMER 1.7 murine melanoma cell line.

Ethics Approval Animal experiments were approved by the University Committee on Animal Resources and performed in accordance with University of Rochester approved guidelines.

http://dx.doi.org/10.1136/jitc-2021-SITC2021.677