Immunological mechanisms of resistance to CDK4/CDK6 inhibitors in breast cancer

Giulia Petroni, Kenneth Gouin, Aitziber Buqué Martinez, Simon Knott, Silvia Formenti, Lorenzo Galluzzi.

1Weill Cornell Medical College, Brooklyn, United States; 2Cedars Sinai, Los Angeles, United States; 3Weill Cornell Medicine, New York, NY, United States

Background Hormone receptor+ (HR+) breast cancer (BC) is the most frequent cause of BC-related deaths. CDK4/6 inhibitors (CDK4/6i) combined with endocrine therapy (ET) emerged as an effective approach for metastatic HR+ BC. However, >60% women with HR+ BC receiving CDK4/6i + ET ultimately relapse, potentially due to activation of poorly characterized immunosuppressive pathways in the tumor microenvironment (TME). Thus, strategies breaking resistance to CDK4/6i + ET in women with HR+ BC are urgently awaited. Radiation therapy (RT) mediates immunostimulatory effects that only partially overlap with those of CDK4/6i + ET, standing out as a promising therapeutic partner. Consistent with this notion, we recently demonstrated that RT followed by the CDK4/6i palbociclib + ET (RT-P+ET) enables superior tumor control in various immunocompetent mouse models of HR+ BC. These findings have inspired the design of a randomized phase II clinical trial testing P+ET vs. RT-P+ET in patients with oligometastatic HR+ BC (CIMER, NCT04563507). In this context, we set out to dissect the immunological mechanisms underlying sensitivity vs. resistance to treatment in HR+ BC exposed to P+ET vs. RT-P+ET.

Methods To dissect the impact of these treatments on immune contexture in HR+ BC, we performed single-cell RNAseq on CD45+ cells infiltrating MPA/DMBA (M/D)-driven carcinomas established in immunocompetent mice (a unique model of luminal B BC), coupled to bulk RNAseq, bioinformatic analysis on public patient datasets, functional studies on ex vivo immune cells and efficacy studies.

Results We observed that (1) RT and P+ET alone mediate partial efficacy correlating with accumulation of immunosuppressive TREG and IL17A-producing γδ T cells, respectively, (2) γδ T cell depletion improves the efficacy of P+ET, (3) RT-P+ET mediates superior (but incomplete) tumor control, which is partially offset by CD4+/CD8+ T cell co-depletion and correlates with limited infiltration by γδ T cells and TREGs, but accumulation of PD-L1 expressing myeloid cells and M2-polarized TREM2+ macrophages, which have been ascribed robust immunosuppressive effects in multiple settings; and (4) that PD-1 blockage does not ameliorate the therapeutic effects of RT-P+ET (not shown), pointing to TREM2+ macrophages as to the main culprits for resistance in this setting.

Conclusions Our observations suggest that γδ T cells and TREM2+ macrophages support the resistance of HR+ BC to CDK4/6i and RT-CDK4/6i, and hence constitute potential targets to delay disease progression.

REFERENCES

http://dx.doi.org/10.1136/jitc-2021-SITC2021.733