ALG.APV-527: A 5T4 TUMOR DIRECTED BISPECIFIC APPROACH UTILIZING ADAPTIRTM TECHNOLOGY DESIGNED FOR CONDITIONAL 4-1BB T CELL/NK AGONISM AGAINST SOLID TUMORS

1Michelle Nelson*, 2Anette Sundstedt, 2Yago Pico de Coaña, 1Ashly Lucas, 2Anneli Nilsson, 2Lill Ljung, 1Allison Chunyk, 2Lena Schultz, 1Catherine McMahan, 1Jane Gross, 2Sara Frizell, 1Hilario Ramos, 2Peter Ellmark. 1Aptevo Therapeutics, Seattle, WA, United States; 2Alligator Bioscience, Lund, Sweden

Background 4-1BB (CD137) is an activation-induced co-stimulatory receptor that regulates immune responses of activated CD8+ T cells and NK cells. Leveraging the therapeutic benefit of 1st generation 4-1BB monospecifics has been challenging due to dose limiting hepatotoxicity. To minimize systemic immune toxicities and enhance activity at the tumor site, we have developed a novel 4-1BB x 5T4 bispecific antibody that stimulates 4-1BB function only when co-engaged with 5T4, a highly selective tumor-associated antigen. The combined preclinical dataset presented here provides an overview of the potential indication landscape, mechanism of action and the efficacy and safety profile of ALG.APV-527, supporting its advancement into the clinic.

Methods Genevestigator Software was used to analyze curated transcriptomic data from bulk tumor mRNA-sequencing data libraries and from single cell RNA-seq libraries for the expression profiles of CD8, 4-1BB and 5T4 across selected human solid tumor datasets. ADCC and ADCP reporter bioassays were utilized to assess Fc engagement by ALG.APV-527. For in vitro tumor lysis studies, human T cells were co-cultured with labelled tumor cells and sub-optimally activated with anti-CD3. Cytotoxicity of tumor cells were continually assessed using a Live-Cell Analysis System.

Results Dual expression of CD8 and 5T4 occurred in many tumor types and correlated well with indications that are pursued in the clinical development of ALG.APV-527. 4-1BB expression was observed in tumor-derived lymphoid subpopulations, especially in those with an exhausted phenotype. Since ALG.APV-527 is designed with a non-Fcγ receptor binding Fc, minimal ADCC & ADCP was induced in vitro. Additionally, ALG.APV-527 enhanced primary immune cell-mediated killing of 5T4-expressing tumor cells when compared to anti-CD3 alone, demonstrating the potential benefit of 4-1BB agonism for enhancing cytotoxic anti-tumor responses in the clinic.

Conclusions ALG.APV-527 is designed to elicit safe and efficacious 4-1BB-mediated antitumor activity in a range of 5T4-expressing tumor indications. Transcriptional profiling of patient tumor samples demonstrates 4-1BB expression in multiple tumor-infiltrating lymphocyte subsets and identifies potential indications with 5T4 expression and CD8+ T cell infiltration. The unique design of the molecule minimizes systemic immune activation and hepatotoxicity, allowing for highly efficacious tumor-specific responses as demonstrated by potent activity in in vitro models. Based on these preclinical data, ALG.APV-527 is a promising anti-cancer therapeutic for the treatment of a variety of 5T4-expressing solid tumors and is progressing towards a phase I clinical trial in 2021.

http://dx.doi.org/10.1136/jitc-2021-SITC2021.796