SUPPLEMENTAL APPENDIX

NKTR-255, a novel polymer-conjugated rhIL-15 with potent antitumor efficacy

Takahiro Miyazaki, Mekhala Maiti, Marlene Hennessy, Thomas Chang, Peiwen Kuo, Murali Addepalli, Palakshi Obalapur, Sara Sheibani, Joanna Wilczek, Rhoneil Pena, Phi Quach, Janet Getz, Andrew Moffett, Yinyan Tang, Peter Kirk, Jicai Huang, Dawei Sheng, Ping Zhang, Werner Rubas, Loui Madakamutil, Saul Kivimäe, and Jonathan Zalevsky
TABLE OF CONTENTS

SUPPLEMENTAL METHODS .. 3
Reagents .. 3
Flow cytometry .. 3
IL-15 receptor binding by surface plasmon resonance ... 4
Daudi Burkitt lymphoma xenograft model bone marrow preparation 5

SUPPLEMENTAL TABLES .. 6
Supplemental Table 1. Mouse IL-15Rα affinity of rhIL-15 and NKTR-255. 6
Supplemental Table 2. Signaling profiles of rhIL-15, NKTR-255, rhIL-15/IL-15Rα and rhIL-
15 N72D/IL-15Rα Fc ... 7

SUPPLEMENTAL FIGURES .. 8
Supplemental Figure 1. Surface expression profile of IL-15 receptor subunits in human
whole blood... 8
Supplemental Figure 2. rhIL-15 and NKTR-255 have similar leukocyte proliferation and
activation properties in vitro compared with precomplexed rhIL-15/IL-15Rα cytokines 9
Supplemental Figure 3. NKTR-255 preferentially induces proliferation of all NK cell
subpopulations and CD8+ T cell memory subpopulations... 10
Supplemental Figure 4. NKTR-255 has superior antitumor activity compared with
precomplexed rhIL-15 N72D/IL-15Rα Fc in a Daudi lymphoma model................................. 11
SUPPLEMENTAL METHODS

Reagents

rhIL-15 was expressed in E. coli. A gene encoding the mature form of IL-15 (residues 49-162, UnitProt P40933) with an additional N-terminal methionine was designed using E. coli-optimized codons, rhIL-15/IL-15Rα; Human IL-15Rα sushi comprises the extracellular sushi domain of IL-15Rα plus a natural hinge domain. The IL-15Rα sushi protein was expressed and purified to homogeneity (2.0 mg rhIL-15 mixed with 3.7 mg IL-15R sushi; the molar ratio between rhIL-15 and human IL-15Rα sushi is 2.5). After complex formation, rhIL-15 N72D/IL-15Rα Fc was purified by two-step affinity and ion-exchange chromatography and ligated into two separate pcDNA-based plasmids (Thermo Fisher). ExpiCHO cells (Thermo Fisher) were transiently transfected with these plasmids encoding each of the two molecules, grown for a week, and the supernatant harvested and filtered. The rhIL-15 N72D:IL-15Rα Fc was purified through a Protein A Column (GE Healthcare). rhIL-15/mIL-15Rα Fc (rhIL-15 and mouse IL-15Rα/Fc fusion protein complex) was prepared by incubating rhIL-15 (Nektar Therapeutics) and mouse IL-15Rα Fc (R&D systems) in a 1:4.5 ratio at 37°C for 30 min.

Flow cytometry

In mouse flow cytometry studies, fluorescent antibodies against CD3, CD4, CD8, CD11b, CD27, CD45, CD107a, CD122, pSTAT5 and pAKT were from BD Biosciences (San Jose, CA); antibodies against CD25, CD44, CD62L, FoxP3 and Ki67 were from eBioscience (San Diego, CA); antibodies against NKp46 and GzmB were from BioLegend (San Diego, CA). In human flow cytometry studies, fluorescent antibodies...
against CD3, CD4, CD8, CD56, CD69, CD107a, CD122 and CD132 were from BioLegend (San Diego, CA); antibodies against pSTAT5 and HLA-DR were from BD Biosciences (San Jose, CA); antibodies against pAKT and pERK were from Cell Signaling Technology (Danvers, MA); antibodies against IL-15 and biotinylated IL-15Rα and associated secondary antibodies were from R&D Systems (Minneapolis, MN).

IL-15 receptor binding by surface plasmon resonance

The surface of a Biacore CM5 sensor chip (GE Healthcare, Marlborough, MA) was activated using a 1:1 mixture of N-Hydroxysuccinimide 1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide) (NHS: EDC) to generate active NHS ester. Goat anti-Human Fc antibody (Thermo Fisher, Waltham, MA) was covalently attached to the surface by injecting it for 3 minutes in 10 mM sodium acetate (pH 4) at 50 µg/mL which resulted in approximately 5000 Response Units (RU) of antibody being immobilized to the surface. Remaining NHS ester was quenched with 1 M ethanolamine. At the initiation of each injection cycle, IL-15-Rα-Fc or IL-2-Rβ-Fc (at 2 µg/mL each; Timaru, New Zealand) was captured onto the activated sensor chip channel by a 3-minute injection step in 1X running buffer (HBS-EP buffer with 0.1 mg/mL BSA). rhIL-15, NKTR-255 and rhIL-15/IL-15Rα were diluted in 1X running buffer, and the starting concentrations were 30 nM (rhIL-15, NKTR-255 and rhIL-15/IL-15Rα) for IL-15Rα and 100 nM (rhIL-15 and rhIL-15/IL-15Rα) or 300 nM (NKTR-255) for IL-2Rβ, from which a series of 3-fold dilutions were injected onto a sensor chip coated with IL-15Rα and IL-2-Rβ.
Daudi Burkitt lymphoma xenograft model bone marrow preparation

Femurs were collected and bone marrow was flushed with 5ml of cold PBS. Bone marrows from both femurs per animal were pooled and washed with 1ml PBS. After centrifugation bone marrow cells were resuspended in 2ml cold PBS. Resuspended bone marrow samples were gently agitated into single cell suspensions and diluted 1:10 for counting. 2 million live cells were plated and red blood cell lysis, subsequent wash and resuspension in PBS were carried out to prepare samples for antibody staining.
Supplemental Table 1. Mouse IL-15Rα affinity of rhIL-15 and NKTR-255.

Mouse IL-15Rα was captured on a Biacore surface plasmon resonance sensor chip and relative affinities were calculated from kinetic measurements. Each assay was performed in duplicate. K_D, dissociation constant (affinity); k_{off}, mean dissociation rate constant; k_{on}, mean association rate.

<table>
<thead>
<tr>
<th></th>
<th>k_{on} (M$^{-1}$sec$^{-1}$)</th>
<th>k_{off} (sec$^{-1}$)</th>
<th>K_D (pM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rhIL-15</td>
<td>3.2 ± 0.31 x 107</td>
<td>6.7 ± 0.69 x 106</td>
<td>2.1 ± 0.42</td>
</tr>
<tr>
<td>NKTR-255</td>
<td>1.4 ± 0.073 x 106</td>
<td>7.0 ± 0.73 x 106</td>
<td>48 ± 2.4</td>
</tr>
</tbody>
</table>
Supplemental Table 2. Signaling profiles of rhIL-15, NKTR-255, rhIL-15/IL-15Rα and rhIL-15 N72D/IL-15Rα Fc

Relative activation was assessed by the percent positivity of pSTAT5, pAKT or pERK in each population. Mean EC$_{50}$ values were obtained from experiments with human whole blood from six healthy donors. EC$_{50}$, half maximal effective concentration; NK, natural killer; ND, not determined; SD, standard deviation.

<table>
<thead>
<tr>
<th></th>
<th>EC$_{50}$ nM (mean ± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NK cells</td>
</tr>
<tr>
<td></td>
<td>pSTAT5</td>
</tr>
<tr>
<td>rhIL-15</td>
<td>0.025 ± 0.011</td>
</tr>
<tr>
<td>NKTR-255</td>
<td>0.15 ± 0.055</td>
</tr>
<tr>
<td>rhIL-15/IL-15Ra</td>
<td>0.0047 ± 0.0039</td>
</tr>
<tr>
<td>rhIL-15 N72D/IL-15Ra Fc</td>
<td>0.0052 ± 0.0020</td>
</tr>
</tbody>
</table>
SUPPLEMENTAL FIGURES

Supplemental Figure 1. Surface expression profile of IL-15 receptor subunits in human whole blood

Representative flow cytometry histogram plots of surface IL-15Rα, IL-2Rβ and IL-2Rγ expression in NK, CD8+ T and CD4+ T cells from three independent experiments. Solid line antibody staining; dotted line: FMO control. FMO, fluorescence-minus-one; NK, natural killer.
Supplemental Figure 2. rhIL-15 and NKTR-255 have similar leukocyte proliferation and activation properties in vitro compared with precomplexed rhIL-15/IL-15Rα cytokines

(A) Dose-response curves representing proliferation of NK, CD8+ T and CD4+ T cells and (B) CD69 surface expression in human PBMCs (n=3) stimulated in vitro overnight with rhIL-15, NKTR-255, rhIL-15/IL-15Rα or rhIL-15 N72D/IL-15Rα Fc. *p≤0.05, **p≤0.01, ***p≤0.001, ****p≤0.0001 (Dunnett's multiple comparisons test versus vehicle). CFSE, carboxyfluorescein diacetate succinimidyl ester; NK, natural killer; PBMCs, peripheral blood mononuclear cells; SEM, standard error of the mean.
Supplemental Figure 3. NKTR-255 preferentially induces proliferation of all NK cell subpopulations and CD8+ T cell memory subpopulations

(A) Total NK cells and NK cell subpopulations, (B) total CD8+ T cells and CD8+ T subpopulations, and (C) total CD4+ T and CD4+ regulatory T cells after a single i.v. dose of vehicle control or NKTR-255 (0.01, 0.03, 0.1, or 0.3 mg/kg) in mice. NK, natural killer; SD, standard deviation; Tcm, central memory T cell; Tem, effector memory T cell; Treg, CD4+ regulatory T cell.

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance placed on this supplemental material which has been supplied by the author(s) J Immunother Cancer doi: 10.1136/jitc-2020-002024
Supplemental Figure 4. NKTR-255 has superior antitumor activity compared with precomplexed rhIL-15 N72D/IL-15Rα Fc in a Daudi lymphoma model

Survival plot of Daudi Burkitt lymphoma xenograft model after the administration of a single dose of NKTR-255 (0.3 mg/kg, i.v.) or rhIL-15 N72D/IL-15Rα Fc (0.3 mg/kg, i.v.) or vehicle, on Day 4 after tumor inoculation. *p<0.05, log-rank test.