TY - JOUR T1 - EpCAM-high liver cancer stem cells resist natural killer cell–mediated cytotoxicity by upregulating CEACAM1 JF - Journal for ImmunoTherapy of Cancer JO - J Immunother Cancer DO - 10.1136/jitc-2019-000301 VL - 8 IS - 1 SP - e000301 AU - Dong Jun Park AU - Pil Soo Sung AU - Jung-Hee Kim AU - Gil Won Lee AU - Jeong Won Jang AU - Eun Sun Jung AU - Si Hyun Bae AU - Jong Young Choi AU - Seung Kew Yoon Y1 - 2020/03/01 UR - http://jitc.bmj.com/content/8/1/e000301.abstract N2 - Background Natural killer (NK) cells can recognize and kill cancer cells directly, but their activity can be attenuated by various inhibitory molecules expressed on the surface. The expression of epithelial cell adhesion molecule (EpCAM), a potential marker for cancer stem cells (CSCs), is known to be strongly associated with poor clinical outcomes in hepatocellular carcinoma (HCC). NK cells targeting CSCs may be a promising strategy for anti-tumor therapy, but little is known about how they respond to EpCAMhigh CSCs in HCC.Methods EpCAM expression was assessed by immunohistochemistry in 280 human HCC tissues obtained from curative surgery. To investigate the functional activity of NK cells against liver CSCs, EpCAMhigh and EpCAMlow Huh-7 cells were sorted by flow cytometry. The functional role of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), which is related to NK cells, was determined by in vitro co-culture of NK cells and hepatoma cells using Hepa1–6 mouse hepatoma cells, as well as in vivo experiments using C57/BL6 mice.Results The frequency of recurrence after curative surgery was higher in patients with positive EpCAM expression than in those with negative EpCAM expression. In subsequent analysis based on the anatomical location of EpCAM expression, patients with peritumoral EpCAM expression showed worse prognosis than those with pantumoral EpCAM expression. Co-culture experiments demonstrated that CEACAM1 was upregulated on the surface of EpCAMhigh HCC cells, resulting in resistance to NK cell-mediated cytotoxicity. Inversely, silencing CEACAM1 restored cytotoxicity of NK cells against EpCAMhigh Huh-7 cells. Moreover, neutralizing CEACAM1 on the NK cell surface enhanced killing of Huh-7 cells, suggesting that homophilic interaction of CEACAM1 is responsible for attenuated NK cell–mediated killing of CEACAM1high cells. In mouse experiments with Hepa1–6 cells, EpCAMhigh Hepa1–6 cells formed larger tumors and showed higher CEACAM1 expression after NK cell depletion. NK-mediated cytotoxicity was enhanced after blocking CEACAM1 expression using the anti-CEACAM1 antibody, thereby facilitating tumor regression. Moreover, CEACAM1 expression positively correlated with EpCAM expression in human HCC tissues, and serum CEACAM1 levels were also significantly higher in patients with EpCAM+ HCC.Conclusion Our data demonstrated that EpCAMhigh liver CSCs resist NK cell–mediated cytotoxicity by upregulation of CEACAM1 expression. ER -