TY - JOUR T1 - Antimetabolite pemetrexed primes a favorable tumor microenvironment for immune checkpoint blockade therapy JF - Journal for ImmunoTherapy of Cancer JO - J Immunother Cancer DO - 10.1136/jitc-2020-001392 VL - 8 IS - 2 SP - e001392 AU - Chia-Sing Lu AU - Ching-Wen Lin AU - Ya-Hsuan Chang AU - Hsuan-Yu Chen AU - Wei-Chia Chung AU - Wei-Yun Lai AU - Chao-Chi Ho AU - Tong-Hong Wang AU - Chi-Yuan Chen AU - Chen-Lin Yeh AU - Sean Wu AU - Shu-Ping Wang AU - Pan-Chyr Yang Y1 - 2020/11/01 UR - http://jitc.bmj.com/content/8/2/e001392.abstract N2 - Background The immune checkpoint blockade (ICB) targeting programmed cell death-1 (PD-1) and its ligand (PD-L1) has been proved beneficial for numerous types of cancers, including non-small-cell lung cancer (NSCLC). However, a significant number of patients with NSCLC still fail to respond to ICB due to unfavorable tumor microenvironment. To improve the efficacy, the immune-chemotherapy combination with pemetrexed, cis/carboplatin and pembrolizumab (anti-PD-1) has been recently approved as first-line treatment in advanced NSCLCs. While chemotherapeutic agents exert beneficial effects, the underlying antitumor mechanism(s) remains unclear.Methods Pemetrexed, cisplatin and other chemotherapeutic agents were tested for the potential to induce PD-L1 expression in NSCLC cells by immunoblotting and flow cytometry. The ability to prime the tumor immune microenvironment was then determined by NSCLC/T cell coculture systems and syngeneic mouse models. Subpopulations of NSCLC cells responding differently to pemetrexed were selected and subjected to RNA-sequencing analysis. The key signaling pathways were identified and validated in vitro and in vivo.Results Pemetrexed induced the transcriptional activation of PD-L1 (encoded by CD274) by inactivating thymidylate synthase (TS) in NSCLC cells and, in turn, activating T-lymphocytes when combined with the anti-PD-1/PD-L1 therapy. Nuclear factor κB (NF-κB) signaling was activated by intracellular reactive oxygen species (ROSs) that were elevated by pemetrexed-mediated TS inactivation. The TS−ROS−NF-κB regulatory axis actively involves in pemetrexed-induced PD-L1 upregulation, whereas when pemetrexed fails to induce PD-L1 expression in NSCLC cells, NF-κB signaling is unregulated. In syngeneic mouse models, the combinatory treatment of pemetrexed with anti-PD-L1 antibody created a more favorable tumor microenvironment for the inhibition of tumor growth.Conclusions Our findings reveal novel mechanisms showing that pemetrexed upregulates PD-L1 expression and primes a favorable microenvironment for ICB, which provides a mechanistic basis for the combinatory chemoimmunotherapy in NSCLC treatment. ER -