RT Journal Article SR Electronic T1 12 Key pharmacokinetic and pharmacodynamic parameters that correlate with the anti-tumor activity of a bispecific PD-L1 conditional 4–1BB agonist JF Journal for ImmunoTherapy of Cancer JO J Immunother Cancer FD BMJ Publishing Group Ltd SP A12 OP A12 DO 10.1136/jitc-2021-SITC2021.012 VO 9 IS Suppl 2 A1 Kinkead, Heather A1 Macedo, Chelsie A1 Sanabria, Angelica A1 Cyprus, Garrett A1 Pandit, Rajay A1 Kalabus, James A1 Becklund, Bryan A1 Sulzmaier, Florian A1 Timmer, John A1 Deveraux, Quinn A1 Eckelman, Brendan A1 Heidt, Analeah YR 2021 UL http://jitc.bmj.com/content/9/Suppl_2/A12.abstract AB Background 4-1BB is a costimulatory molecule that is predominantly expressed on activated CD8+ T cells and is induced upon T cell receptor mediated activation.1 Within the tumor microenvironment, 4-1BB-expressing T cells are enriched for anti-tumor reactivity 2; thus, 4-1BB agonism provides an opportunity for selective activation of anti-cancer immune effector cells. Early efforts to develop 4-1BB targeted agonists were limited by poor tolerability (Urelumab) or insufficient efficacy (Utomilumab). INBRX-105 is a bispecific antibody that aims to overcome these prior limitations through induction of 4-1BB agonism specifically at sites of PD-L1 expression. Preclinical models have defined pharmacokinetic (PK) and pharmacodynamic (PD) parameters that are correlated with maximal INBRX-105-specific immune responses and antitumor activity.Methods INBRX-105 was generated by linking 2 humanized single-domain antibody binding domains targeting human PD-L1 and 4-1BB, fused to an effector-silenced human IgG1 constant domain (Fc). A bispecific, anti-mouse PD-L1x4-1BB surrogate molecule, INBRX-105-a, was engineered to match the function and target affinities of INBRX-105. This surrogate was tested for in vivo activity in non-tumor-bearing and MC-38 tumor-bearing animals, including measurements of serum exposure, PD-L1 receptor occupancy, immunophenotyping of peripheral blood and intra-tumoral immune cell populations.Results INBRX-105-a was shown to be an appropriate anti-mouse surrogate for INBRX-105 in a variety of in vitro assays. Comparable potencies of activity were demonstrated in a PD-L1 dependent 4-1BB reporter assay, as well as in cytokine induction through co-stimulation of primary T cells. In vivo, INBRX-105-a showed robust induction of mouse CD8+ T effector memory populations (CD8+ TEM) at dose levels that achieved ≥ 96 hours of PD-L1 receptor occupancy. A serum concentration of 800 ng/mL at 96 hours, achieved by a dose of 2 mg/kg in mice, was sufficient to provide the requisite occupancy for maximal pharmacodynamics. CD8+ TEM responses were dependent on 4-1BB agonism and were more efficiently induced by PD-L1 localization, as opposed to 4-1BB multivalent clustering alone. Optimal tumor responses, including complete responses and demonstration of immunological memory, were observed when maximal 4-1BB driven pharmacodynamics were paired with extended PD-1/PD-L1 pathway blockade, provided either by an orthogonal molecule or increased exposure of INBRX-105.Conclusions Preclinical receptor occupancy and pharmacokinetic determinations have defined a dose of INBRX-105-like activity that induces maximal pharmacodynamics. Additional PD-1 checkpoint inhibition does not change the pharmacodynamic profile of INBRX-105-a, but does allow for optimal efficacy. INBRX-105 is currently being evaluated in patients with advanced solid tumors in a first-in-human trial (NCT03809624).Trial Registration INBRX-105 is currently being evaluated in patients with advanced solid tumors in a first-in-human trial (NCT03809624).ReferencesVinay DS, Kwon BS. 4-1BB (CD137), an inducible costimulatory receptor, as a specific target for cancer therapy. BMB Reports; 2014:47:122–129.Ye Q, Song D-G, Poussin M, et al. CD137 accurately identifies and enriches for naturally occurring tumor-reactive T cells in tumor. Clin Cancer Res; 2014:20:44–55.Ethics Approval The care and use of all animals were reviewed and approved by Explora BioLabs’ IACUC # SP17-010-013 and conducted in accordance with AAALAC regulations.