
SUPPLEMENTARY MATERIALS 

 

Tumor samples and peripheral blood collection 

If the tumor content was estimated to be more than 40% after thorough pathological review, 

tumor DNA was extracted from freshly obtained tissues using a QIAamp Mini Kit (Qiagen, 

Hilden, Germany) according to the manufacturer's instructions. For DNA analysis, we used 

RNaseA (cat. #19101; Qiagen). We measured concentrations and 260/280- and 260/230-nm 

ratios with an ND1000 spectrophotometer (Nanodrop Technologies, Thermo Fisher 

Scientific, MA, USA) and then further quantified DNA using a Qubit fluorometer (Life 

Technologies, CA, USA). 

Sequencing of Exome and Transcriptome  

Genomic DNA from tumor tissue and matched blood samples was extracted using a QIAamp 

DNA Mini Kit (Qiagen). Library preparation was performed by using the SureSelect XT 

Human All Exon V6 kit (Agilent). Briefly, 900-1,000 ng of genomic DNA from tumor tissue 

and matched blood samples was sheared by Covaris Adaptive Focused Acoustics (AFA) 

sonication device (S2, Covaris Inc.), and 150-200 bp of the DNA fragments were processed 

for end-repairing, 3’-end adenylation, and ligation to adaptors.  Sequencing libraries were 

performed on the HiSeq 2500 platform (Illumina) in 100-bp paired-end mode of TruSeq 

Rapid PE Cluster kit and TruSeq Rapid SBS kit (Illumina). RNA sequencing libraries were 

prepared using TruSeq RNA Exome Library Prep kit (Illumina) according to the 

manufacturer’s protocol. Isolated total RNA was used in a reverse transcription reaction with 

random primers using SuperScript II reverse transcriptase (Invitrogen) according to 

manufacturer’s protocols. RNA sequencing libraries were prepared via end-repair, 3’-end 

adenylation, adapter ligation, and amplification and those were sequenced 100-bp paired-end 
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mode of the TruSeq Rapid PE Cluster Kit and the TruSeq Rapid SBS Kit in Illuminia HiSeq 

2500 (Illumina). 

Variant calling and filtering 

Exome sequencing reads were aligned to the human reference genome (GRCh37) using the 

bwa-mem algorithm from BWA (version 0.7.17). Further pre-processing of read alignment 

was performed using Genome Analysis Tool Kit (GATK, version 4.1.1.0)[1]. In brief, reads 

that were marked with duplicates were realigned to indels to remove alignment artifacts, and 

systematic errors in base quality scores were detected and recalibrated with known 

polymorphic sites of dbSNP (version 138)[2], 1000G (phase 1)[3] and HapMap (phase 3)[4] 

data using BaseRecalibrator and ApplyBQSR modules with default option parameters. We 

sought to identify pathogenic germline variants by scanning BAM files of each tumor and 

matched normal sample with the list for genomic regions of oncogenic germline variants 

found across pan-cancer[5]. The extraction of somatic mutations in the tumor samples was 

carried out with their matched normal samples using Mutect2[6] and Strelka2[7] to establish 

the highly sensitive somatic variant union sets. Variants with minimum depth ≥ 5 with at least 

2 alternative alleles were used for further analysis, and annotated using Ensemble Variant 

Effect Predictor (VEP)[8] with the GRCh37 database. Allele-specific copy-number was 

quantified using FACETS (version0.6.0)[9] in default option parameters, and the resulting 

copy-ratio profiles were then used to estimate the fraction of cancer nuclei, average cancer 

genome ploidy, and somatic copy-number alterations by running ABSOLUTE (version 

1.0.6)[10]. 

Mutational signature analysis 

To assign single base substitutions (SBS) to the mutational signatures as defined by 

Alexandrov et al. [11], we utilized the deconstructSigs package (version 1.6.0) [12]. We 
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considered the characteristic patterns of mutations in trinucleotide context per sample with 

the reference of ‘signatures.exome.cosmic.v3.may2019’, and the contribution of each 

biological phenotype was represented as follows: age (SBS1 and SBS5), APOBEC 

(apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like; SBS2 and SBS13), UV 

(ultraviolet; SBS7a, SBS7b, SBS7c, and SBS7d), smoking (SBS4), immunoglobulin gene 

hypermutation (SBS9), HRD (homologous recombination deficiency; SBS3), MMRD 

(mismatch repair deficiency; SBS6, SBS15, SBS20 and SBS26), NERD (nucleotide excision 

repair deficiency; SBS8) [13], DPD (DNA proofreading deficiency; SBS10a and SBS10b) 

and BERD (base excision repair deficiency; SBS18).  

Detection of LOH, TAI and LST 

In search of additional genetic variants that are associated with HRD, we examined three 

independent measures of genomic instability: loss-of-heterozygosity (LOH) [14], telomeric 

allelic imbalance (TAI) [15], and large-scale state transitions (LST) [16]. From allele-specific 

copy number profiles, we determined LOH when absolute minor allelic copy number was 

zero and the other allele had absolute copy number > 0 spanning genomic regions over 15 

megabases (Mb). LST was regarded in each chromosome when chromosome breaks 

(translocations, inversions or deletions) in adjacent segments of DNA was observed in larger 

than 10 Mb. TAI was defined when the absolute copy numbers between minor and major 

alleles were differentially observed in extending to the telomeric end, and not in crossing the 

centromere. 

Identification of putative neoantigens 

We identified putative neo-peptides using Mupexi[17] with NetMHCpan (version 4.0)[18] 

binding strength predictor between peptides and MHC molecules. The prediction depended 

on somatic mutations and HLA types. Transcript expression file was used to consider 
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expression of mutated peptides, which was optional. We performed HLA typing to determine 

HLA alleles and corresponding MHC complexes using Optitype[19]. We considered the neo-

peptides with mutRANK < 2% for further analysis. We regarded a somatic mutation 

generating at least one neo-peptide as a neoantigen. Based on the cancer cell fraction (CCF) 

estimated by ABSOLUTE[10], newly emerged neoantigens were defined when the CCF of 

pre-treatment was zero and the CCF of on-treatment was not equal to zero. 

Transcriptome sequencing analysis 

Transcriptome reads were aligned to the human reference genome (GRCh38) using 

the 2-pass default mode of STAR (version 2.6.1)[20] with the annotation of ENSEMBL 

(version 98). Gene expression abundance as the unit of TPM (transcript per million) was 

estimated using the default option parameters in running RSEM (version 1.3.1)[21]. We 

estimated the gene-set enrichment scores of representative pathways involved in the TME 

using single-sample gene set enrichment analysis (ssGSEA) algorithm for each sample[22, 

23] . By integrating the transcriptomic data, we classified each tumor sample into four 

distinct microenvironment subtypes: immune-depleted, fibrotic, immune-enriched, and 

immune-enriched/fibrotic [23]. We performed differentially expressed gene (DEG) analysis 

using the edgeR package[24]. Following normalization using trimmed mean of M values, 

tagwise dispersions were estimated and subjected to an exact test. DEGs were filtered 

according to the following criteria: expression fold change > 1.5; and P value from Wilcoxon 

rank sum test < 0.05. We calculated single-sample GSEA (ssGSEA) scores for MSigDB[25, 

26] curated canonical genesets (C2.CP) using GSVA software package[27]. The change in 

ssGSEA scores after treatment was defined as the scores of pre-treatment subtracted from the 

scores of on-treatment. Intratumoral cell populations were estimated with MCP-Counter[28].  
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Sequencing of Single-cell RNA and T-cell receptor in peripheral blood mononuclear 

cells 

Peripheral blood mononuclear cells (PBMCs) were isolated by Ficoll (GE Healthcare, Little 

Chalfont 17-5442-02 UK). After processing, PBMCs were resuspended in freezing media 

(RecoveryTM cell culture freezing medium, Gibco) and stored in liquid nitrogen. The cells 

were then cryopreserved in liquid nitrogen until use. All samples showed a viability of 

around 90% on average after thawing. Single-cell RNA-seq libraries were prepared by using 

the Chromium Next GEM Single Cell 5’ Kit v1.1 (10× Genomics, Pleasanton, CA, USA) 

following the manufacturer’s instructions. Briefly, the Chromium Controller instrument was 

utilized to encapsulate single cells into droplets and the single cells were barcoded reverse 

transcription (RT) of mRNA, followed by amplification, shearing and Illumina library 

construction. cDNA library quality was determined using Agilent Bioanalyzer and Next 

generation sequencing was performed by using the Novaseq6000 (200 cycles) cartridges 

from Illumina. TCR V(D)J segments were enriched from amplified cDNA from 5′ libraries 

via PCR amplification using a Chromium Single-Cell V(D)J Enrichment kit according to the 

manufacturer’s protocol (10X Genomics).  

Single cell RNA and TCR sequencing analysis  

Single cell RNA sequencing (scRNA-seq) reads were aligned to the GRCh38 reference 

genome and quantified using Cell-Ranger (10X Genomics, version 3.1.0). We filtered out 

cells which met either of the following conditions: 1) putative doublets predicted by 

Scrublet[29], 2) low number of detected genes (< 200), and 3) high fraction of mitochondrial 

contamination (>10%). The remaining cells of raw UMI counts were then log-normalized 

with the scale factor of 10,000 and scaled across the given samples using Seurat package[30]. 

We performed the principal component analysis (PCA) on the integrated gene expression 

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance
Supplemental material placed on this supplemental material which has been supplied by the author(s) J Immunother Cancer

 doi: 10.1136/jitc-2022-005041:e005041. 10 2022;J Immunother Cancer, et al. Kwon M



profiles with the most variable 2500 genes, and the top principal components determined by 

‘elbow’ heuristics were applied to remove batch effects across samples using Harmony 

algorithm[31]. For exploratory visualization, cells were projected into two-dimensional 

Uniform Manifold Approximation and Projection (UMAP) space[32]. Cells were clustered 

using FindNeighbors and FindCluster functions in Seurat package, and annotated by 

canonical marker genes.  

To process single-cell TCR-sequencing data, we ran CellRanger ‘vdj’ pipeline (10X 

genomics, version.3.1.0) with the GRCh38 reference for demultiplexing, gene quantification 

and TCR clonotype assignment. TCR clonality was estimated as follows: [33] 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 1 − 𝑆𝑆ℎ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 −𝑊𝑊𝑊𝑊𝐶𝐶𝐶𝐶𝑊𝑊𝑊𝑊 𝐶𝐶𝐶𝐶𝑖𝑖𝑊𝑊𝑖𝑖 (𝐻𝐻′)
ln(# 𝐶𝐶𝑜𝑜 𝑝𝑝𝑊𝑊𝐶𝐶𝑖𝑖𝑝𝑝𝑝𝑝𝐶𝐶𝐶𝐶𝑝𝑝𝑊𝑊 𝑝𝑝𝐶𝐶𝐶𝐶𝑢𝑢𝑝𝑝𝑊𝑊 𝑠𝑠𝑊𝑊𝑢𝑢𝑝𝑝𝑊𝑊𝐶𝐶𝑝𝑝𝑊𝑊𝑠𝑠)

 

 

where Shannon-Wiener index (H’) is the measure of diversity. Samples with monoclonal T 

cell population have a clonality of 0, while the clonality converges to 1 in samples with 

extremely diverse T cell population. To investigate how T cell clonotypes changed after the 

treatment, we grouped each T cell clone by comparing the clonal frequency of pre-treatment 

and that of on-treatment. T cell clones were defined as expanded clones when the clonal 

frequencies increased significantly compared to those of pre-treatment according to Fisher’s 

exact test. T cell clones detected only in on-treatment samples were defined as novel clones. 

We excluded the clones with clone size 1 from the novel clones. We defined the T cell clones 

exhibiting decreased clonal frequencies as contracted clones based on Fisher’s exact test. The 

rest of clones are defined as persistent clones. 

Prediction of binding affinity of pMHC and TCR 

To investigate the binding affinity of novel or expanded CD8+ T cell receptors and newly 

emerged neo-peptides presented by MHC (pMHC) , we utilized ERGOII[34], a deep-learning 
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based tool for prediction of TCR-peptide binding. Inside the tool, long short-term memory 

(LSTM) neural network model was trained on McPAS-TCR[35], a database of pathology-

associated T cell receptor sequences. We calculated the ERGOII binding score for all possible 

combinations of novel or expanded CD8+ TCRs and pMHCs derived from newly emerged 

neoantigens, and the highest affinity score for each clone is taken as a representative value for 

each clone. 
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Supplementary Figure S1. Study design and sample status (a) Overview of 

study design and sample collection. (b) Status of samples by data type. Blue filled 

squares indicate the presence of pre-treatment sample, and blue filled squares with 

“o” mark indicate the presence of both pre-treatment samples and on-treatment 

samples. 

 

Supplementary Figure S2. Representative patients with distinct genetic 

profiles and their responses to ceralasertib in combination with durvalumab. 

(a) (Upper) The representative microscopic findings represent ATM complete loss 

and PD-L1 CPS score 1. (lower) Allele frequency plot demonstrates frequent loss of 

heterozygosity (LOH, red color), telomeric allelic imbalance (TAI, blue color), and 

large-scale transition (green checks). Areas colored purple represents both LOH and 

TAI. Plot showing absolute copy number marks copy number of minor allele (grey 

line) and total copy number (both major and minor allele). Amplified copy number 

lined in red and deleted copy number lined in blue. (b) Pre-treatment and on-

treatment images of positron emission tomography–computed tomography. (c) 

(Upper) The representative microscopic findings represent intact ATM expression in 

tumor nucleus and PD-L1 CPS score 1. (lower) Allele frequency plot demonstrates 

no apparent LOH. (d) Pre-treatment and on-treatment coronal reconstructed images 

of computed tomography. 

 

Supplementary Figure S3. Transcriptomic changes in TME signatures and cell 

types during treatment (a) Heatmap illustrating original GSVA scores of the gene 

sets shown in Figure 3b. The left dark grey bars represent log-transformed P value 

calculated by comparing GSVA score of responders (PR) and that of progressors (SD, 
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PD) in pre-treatment samples. (b) Changes in cytotoxic lymphocyte abundance during 

the study treatment. The cytotoxic lymphocyte score was estimated by deconvoluting 

the WTS data from pre- and on-treatment samples of eight patients. 

 

Supplementary Figure S4. Cell type identification and comparison of the 

proportion of each cell type (a) UMAP plot of 32,787 total cells derived from pre- 

treatment (n=8) and on-treatment (n=7) peripheral blood samples and color-coded 

by global cell types, sample origin, timepoint, and best response. (b) (Left) UMAP 

plot of 19,621 T/NK cells color-coded by more subdivided cell type. (right) 

Comparison of the proportion of each subtype between pre-treatment samples from 

PR patients (green) and those from PD patients (ocher). (c) (Left) UMAP plot of 

10,744 myeloid cells color-coded by more subdivided cell type. (right) Comparison of 

the proportion of each subtype between pre-treatment samples from PR patients 

(green) and those from PD patients (ocher). (d) (Left) UMAP plot of 1,143 B cells 

color-coded by more subdivided cell type. (right) Comparison of the proportion of 

each subtype between pre-treatment samples from PR patients (green) and those 

from PD patients (ocher). Only significant P values from Wilcoxon rank sum test are 

shown. 

 

Supplementary Figure S5. TCR detection rate and distribution of CD8+ T cell 

clones (a) UMAP plot of 19,621 T / NK cells from pre- (n=8) and on-treatment (n=7) 

peripheral blood samples. Cells are color-coded according to the timepoint. (b) (Left) 

UMAP plot of T / NK cells color-coded by TCR detection. (right) Bar plot showing the 

percentage of TCR-detected cells in each T cell subtype. (c) (Upper) Number of 
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each categorized clone type per patient. (lower) Proportion of each categorized 

clone type among all CD8+T cell clones. 

Supplementary Figure S6. Expression of canonical markers to assign cell 

types (a) Dot plot showing expression of marker genes used for global cell type 

annotation. (b) Dot plot showing expression of marker genes used for T / NK cell 

subtype annotation. (c) Dot plot showing expression of marker genes used for 

myeloid cell subtype annotation. (d) Dot plot showing expression of marker genes 

used for B cell subtype annotation. 
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