
Supplementary material

Figure. S1 The model of M0, M1-like and M2-like macrophages induced by THP-1 cells and PBMC.

A. The procedure and **B.** the morphology of M0, M1-like and M2-like macrophages induced from THP-1 cells. **C-D.** Expression of CD86 and CD206 in M0, M1-like and

M2-like macrophages was measured by FCM. E. The level of IL-12, TNF-α, IL-10 and TGF- β in the supernatant of M0, M1, and M2-like macrophages was examined by ELISA assays. F. Expression of M1-related markers in M1-like macrophages and M2-related markers in M2-like macrophages were analyzed by qPCR. G. The procedure and H. the morphology of M0, M1-like and M2-like macrophages induced from PBMC. I. IF combined with FISH assays showed that NR_109 was expressed in CD206⁺ TAMs of GC tissues. J. Expression of CD163 and CD206 in TAMs isolated from the primary GC tissues (pri-GC) and the matched adjacent non neoplastic tissues (non-GC) was measured using qPCR. K. Expression of M1-related markers in M2-NR_109^{low} cells and M2-NR_109^{high} cells was tested by qPCR. L. Expression of CD206 in THP-1 induced M2-NR_109^{low} cells was measured using FCM. M. The 3' and N. 5' RACE assays of NR 109 in THP-1 induced M2-like macrophages. O. The CPAT and CPC 2 database showed that NR_109 has barely any coding probability. P. The NONCODE database showed the distribution of NR_109 in human body. The statistical data are from three independent experiments and the bar indicates the SD values (**p* < 0.05, ***p* < 0.01).

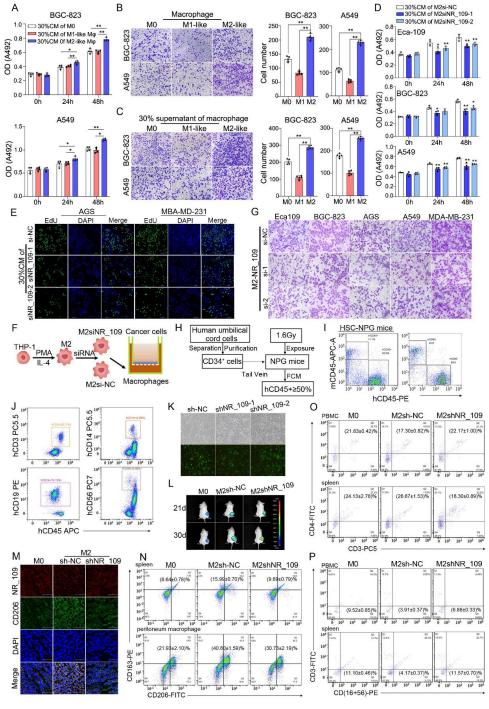
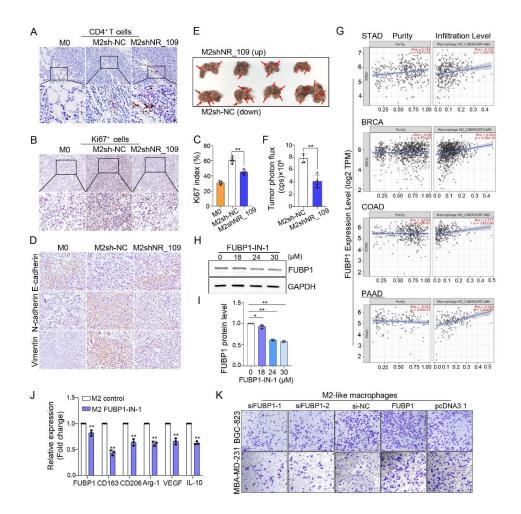



Figure. S2 The role of NR_109 in M2-like macrophage polarization.

A. The proliferation of tumor cells when cocultured with 30% supernatant of M2-like macrophages was analyzed by MTS assays. **B-C.** The migration of tumor cells when cocultured with cells or 30% supernatant of M2-like macrophages was exhibited. **D.** The proliferation of tumor cells in the coculture system with 30% culture medium (CM) of M2-NR_109^{low} cells was measured by using MTS and **E.** EdU incorporation

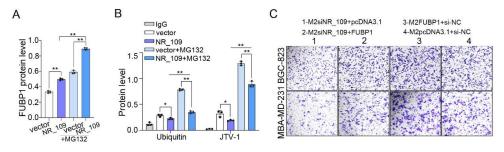

assays. **F.** The schematic diagram showed the coculture system of tumor cells and macrophages. **G.** The migration of tumor cells was reduced when cocultured with M2-NR_109^{low} cells. **H.** The construction of HSC-NPG mice. **I.** The proportion of human CD45⁺ cells in HSC-NPG mice was analyzed by FCM. **J.** The CD3⁺ T cells, CD14⁺ cells, CD19⁺ B cells and CD56⁺ NK cells derived from human were detected in the peripheral blood of HSC-NPG mice. **K.** The M2shNR_109 cells in which NR_109 were stably knocked down in M2-like macrophages were established. **L.** The tumor size of different groups in HSC-NPG mice was analyzed by *in vivo* imaging. **M.** IF combined with FISH assays showed that the MFI of NR_109 and CD206 in tumor tissues were also decreased in M2shNR_109 group. **N-P.** The percentage of M2-like macrophages (CD163⁺CD206⁺) in spleen and peritoneum macrophages, and the percentage of CD4⁺ T cells and NK cells (CD3⁻CD16⁺CD56⁺) in the PBMC and spleen were measured by FCM assays. The statistical data are from three independent experiments and the bar indicates the SD values (**p* < 0.05, ***p* < 0.01).

Figure. S3 Knockdown NR_109 reduced the activity of M2-like macrophages to

promote growth and metastasis of tumor cells in vivo.

A. The infiltration of CD4⁺ T cells, **B-C.** Ki67 index and **D.** EMT-related markers in tumor tissues of different groups in HSC-NPG mice were analyzed by IHC. **E.** The number of lung metastasis nodules and **F.** the statistical graph of photon flux which presented the tumor size of distinct groups in lung metastasis model were exhibited. **G.** TIMER2.0 database revealed a significant positive correlation between the expression of FUBP1 and the infiltration of M2-like macrophages in many cancer types. **H.** Western-blot and **I.** qPCR assays showed the expression of FUBP1 was significantly attenuated in M2-like macrophages treated with the FUBP1 inhibitor, FUBP1-IN-1. **J.** Expression of M2-related markers in M2-like macrophages treated with FUBP1-IN-1 was measured by qPCR. **K.** The migration of tumor cells was examined when cocultured with M2-FUBP1^{low} cells or M2-FUBP1^{high} cells. The statistical data are from three independent experiments and the bar indicates the SD values (**p* < 0.05, ***p* < 0.01).

Figure. S4 NR_109 hindered the ubiquitin-mediated degradation of FUBP1.

A. The statistical chart showed that the expression of FUBP1 was further increased in M2-NR_109^{high} cells treated with MG132 (25 μ M). **B.** The statistical chart of the co-IP assays exhibited that ectopic NR_109 expression decreased the density of ubiquitin and JTV-1, and the MG132 further enhanced the effect. **C.** The migration of cocultured tumor cells was partially reversed when co-transfected with FUBP1 and siNR_109 in M2-like macrophages. The statistical data are from three independent experiments and the bar indicates the SD values (*p < 0.05, **p < 0.01).

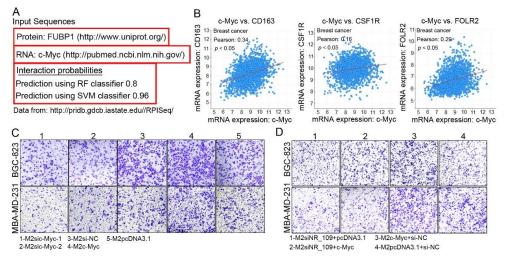
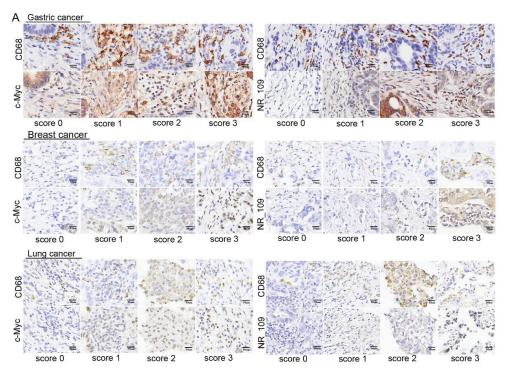



Figure. S5 c-Myc was participated in M2-like macrophage polarization.

A. The RNA-Protein Interaction Prediction (RPISeq) website showed an obvious interaction probability score between FUBP1 protein and the c-Myc RNA sequence. **B.** The cBioPortal database showed that c-Myc was significant associated with TAM-related markers including CD163, CSF1R and FOLR2 in BC. **C.** The migration of tumor cells was measured when cocultured with M2-c-Myc^{low} cells or M2-c-Myc^{high} cells. **D.** The migration of cocultured tumor cells was partially reversed when co-transfected with c-Myc and siNR_109 in M2-like macrophages.

Figure. S6 A. The representative regions and scores of IHC staining for CD68 and ISH staining for NR_109 in GC, BC and LC tissues.

Table S1 Correlation between the number of CD163⁺ TAMs and

Number of CD163 ⁺ TAMs						
Parameters	TS		P-value	TAMIS		P-value
GC	Low (%)	High (%)		Low (%)	High (%)	
Age/year			0.705			0.702
< 60	5 (50)	5 (50)		7 (70)	3 (30)	
≥ 60	8 (40)	12 (60)		12 (60)	8 (40)	
Gender		~ /	0.427			0.372
Male	11 (48)	12 (52)		16 (70)	7 (30)	
Female	2 (29)	5 (71)		3 (43)	4 (57)	
Grade			0.419			0.034*
I-II	10 (45)	12 (55)		16 (73)	6 (27)	
III	2 (25)	6 (75)		2 (25)	6 (75)	
Tumor size		~ /	0.721			1.000
\leq 5cm	5 (38)	8 (62)		8 (62)	5 (38)	
- > 5cm	8 (47)	9 (53)		11 (65)	6 (35)	
Lymph node	0(11)		0.045*	()	- ()	0.702
No	7 (70)	3 (30)		7 (70)	3 (30)	
Yes	5 (25)	15 (75)		12 (60)	8 (40)	
TNM Stage	0 (20)	10 (10)	1.000	12 (00)	0 (10)	1.000
I-II	7 (47)	8 (53)		10 (67)	5 (33)	
III-IV	6 (40)	9 (60)		9 (60)	6 (40)	
BC						
Age/year			0.022*			0.983
< 70	16 (36)	28 (64)		25 (57)	19 (43)	
\geq 70	10 (71)	4 (29)		8 (57)	6 (43)	
Grade	()	~ /	0.771			0.621
I-II	14 (47)	16 (53)		18 (60)	12 (40)	
III	12 (43)	16 (57)		15 (54)	13 (46)	
Tumor size	()	~ /	1.000			1.000
\leq 4cm	23 (45)	28 (55)		29 (57)	22 (43)	
> 4cm	3 (43)	4 (57)		4 (57)	3 (43)	
Lymph node			0.506			0.049*
No	14 (41)	20 (59)		23 (68)	11 (32)	
Yes	12 (50)	12 (50)		10 (42)	14 (58)	
TNM Stage	. ,	. /	0.020*	· · ·		0.477
I-II	22 (55)	18 (45)		24 (60)	16 (40)	
III-IV	4 (22)	14 (78)		9 (50)	9 (50)	

clinicopathologic characteristics in GC and BC

The χ^2 -tests were used. *Statistically significant values.

TN: tumor nest, TS: tumor stroma, GC: gastric cancer, BC: breast cancer

Table S2 Correlation between the expression of NR_109 and the number

Protein	Expression	NR_109		r	P-value
		Low	High		
TS (GC)	Low	8	7	0.424	0.019*
CD163	High	2	13		
TN (GC)	Low	7	11	0.144	0.447
CD163	High	3	9		
TS (BC)	Low	17	9	0.309	0.018*
CD163	High	11	21		
TN (BC)	Low	16	17	0.005	0.971
CD163	High	12	13		

of CD163⁺ TAMs in TS and TN of GC and BC

The Spearman correlation analysis were used. *Statistically significant values. TN: tumor nest, TS: tumor stroma, GC: gastric cancer, BC: breast cancer.

Table. S3 Prin	Primers for quantifying gene expression	
Gene	Primer Sequence (5'->3')	

Gene	Primer Sequence (5'->3')	
Arg-1	Forward: GCAAGGTGATGGAAGAAA	
	Reverse: CTGGTGTGAAAGATGGGT	
IL-10	Forward: GGAGAACCTGAAGACCCT	
	Reverse: GGCTTTGTAGATGCCTTTC	
TGF-β	Forward: GGCCAGATCCTGTCCAAGC	
	Reverse: GTGGGTTTCCACCATTAGCAC	
	Forward: CCTCATTGCTACTGCCCTCT	
CCL5	Reverse: GTTCAGCCGGGAGTCATACA	
	Forward: CGTGTGCACCTACCTCAAGA	
CD206	Reverse: AAGGACAGACCAGTACAATTCAGTA	
	Forward: TTTGTCAACTTGAGTCCCTTCAC	
CD163	Reverse: TCCCGCTACACTTGTTTTCAC	
VECE	Forward: CTTGCCTTGCTGCTCTACCT	
VEGF	Reverse: TCTCTCCTATGTGCTGGCCT	
	Forward: TTTCCGTGAAAACGGAGCTG	
TNF-α	Reverse: CACCCACAAGAAGAGGCAGAT	
	Forward: GGCGGCTTGAAGAATTTGGAC	
HLA-DRa	Reverse: CATTGGTGATCGGAGTATAGTTGGA	
П 10	Forward: CCTTGCACTTCTGAAGAGATTGA	
IL-12	Reverse: ACAGGGCCATCATAAAAGAGGT	
INCO	Forward: CCATCATGGACCACCACACA	
iNOS	Reverse: TCCGCATTAGCACAGAAGCA	
CADDII	Forward: CGCTGAGTACGTCGTGGAGTC	
GAPDH	Reverse: GCTGATGATCTTGAGGCTGTTGTC	
ND 100	Forward: TTGAGATGTCGAGAGCGAGC	
NR_109	Reverse: CTTGGGCTGTGCTGAGACTA	
	Forward: CCACCAGCAGCGACTCTGA	
c-Myc	Reverse: GCAGAAGGTGATCCAGACTC	

	Forward: AGGATTACCAGCCTGAACACT		
FUBP1	Reverse: GACAACACCCGAAAGGATAGC		
	siRNA Oligos		
Target gene	Sequence (5'->3')		
ND 100 1	Sense: CUGUCAUCUACACAUGAAUTT		
NR_109-1	Antisense: AUUCAUGUGUAGAUGACAGTT		
NID 100.2	Sense: CUUGUCACCAUAACAUUAUTT		
NR_109-2	Antisense: AUAAUGUUAUGGUGACAAGTT		
EUDD1 1	Sense: GGUGCUGACAAACCUCUUATT		
FUBP1-1	Antisense: UAAGAGGUUUGUCAGCACCTT		
FUBP1-2	Sense: GGUGUUCGCAUUCAGUUUATT		
FUBPI-2	Antisense: UAAACUGAAUGCGAACACCTT		
- M 1	Sense: CGUCCAAGCAGAGGAGCAATT		
c-Myc-1	Antisense: UUGCUCCUCUGCUUGGACGTT		
a Mua 2	Sense: GCUUGUACCUGCAGGAUCUTT		
c-Myc-2	Antisense: AGAUCCUGCAGGUACAAGCTT		