Skip to main content

Ex Vivo Expansion of Human NK Cells Using K562 Engineered to Express Membrane Bound IL21

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1441))

Abstract

Natural killer (NK) cells have gained significant attention for adoptive immunotherapy of cancer due to their well-documented antitumor function. In order to evaluate the therapeutic efficacy of NK cell adoptive immunotherapy in preclinical models with a potential for clinical translation, there is a need for a reliable platform for ex vivo expansion of NK cells. Numerous methods are reported in literature using cytokines and feeder cells to activate and expand human NK cells, and many of these methods are limited by low-fold expansion, cytokine dependency of expanded NK cells or expansion-related senescence. In this chapter, a robust NK cell expansion protocol is described using K562 cell line gene modified to express membrane bound IL21 (K562 mb.IL21). We had previously demonstrated that this platform enables the highest fold expansion of NK cells reported in the literature to date (>47,000-folds in 21 days), and produces highly activated and pure NK cells without signs of senescence, as determined by telomere shortening.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Buddingh EP, Schilham MW, Ruslan SE et al (2011) Chemotherapy-resistant osteosarcoma is highly susceptible to IL-15-activated allogeneic and autologous NK cells. Cancer Immunol Immunother 60:575–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Alici E, Sutlu T, Bjorkstrand B et al (2008) Autologous antitumor activity by NK cells expanded from myeloma patients using GMP-compliant components. Blood 111:3155–3162

    Article  CAS  PubMed  Google Scholar 

  3. Miller JS, Soignier Y, Panoskaltsis-Mortari A et al (2005) Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 105:3051–3057

    Article  CAS  PubMed  Google Scholar 

  4. Iliopoulou EG, Kountourakis P, Karamouzis MV et al (2010) A phase I trial of adoptive transfer of allogeneic natural killer cells in patients with advanced non-small cell lung cancer. Cancer Immunol Immunother 59:1781–1789

    Article  PubMed  Google Scholar 

  5. Rubnitz JE, Inaba H, Ribeiro RC et al (2010) NKAML: a pilot study to determine the safety and feasibility of haploidentical natural killer cell transplantation in childhood acute myeloid leukemia. J Clin Oncol 28:955–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bachanova V, Burns LJ, McKenna DH et al (2010) Allogeneic natural killer cells for refractory lymphoma. Cancer Immunol Immunother 59:1739–1744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Geller MA, Cooley S, Judson PL et al (2011) A phase II study of allogeneic natural killer cell therapy to treat patients with recurrent ovarian and breast cancer. Cytotherapy 13:98–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kiessling R, Klein E, Wigzell H (1975) “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol 5:112–117

    Article  CAS  PubMed  Google Scholar 

  9. Seaman WE, Sleisenger M, Eriksson E et al (1987) Depletion of natural killer cells in mice by monoclonal antibody to NK-1.1. Reduction in host defense against malignancy without loss of cellular or humoral immunity. J Immunol 138:4539–4544

    CAS  PubMed  Google Scholar 

  10. Imai K, Matsuyama S, Miyake S et al (2000) Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: an 11-year follow-up study of a general population. Lancet 356:1795–1799

    Article  CAS  PubMed  Google Scholar 

  11. Shlomchik WD, Couzens MS, Tang CB et al (1999) Prevention of graft versus host disease by inactivation of host antigen-presenting cells. Science 285:412–415

    Article  CAS  PubMed  Google Scholar 

  12. Olson JA, Leveson-Gower DB, Gill S et al (2010) NK cells mediate reduction of GVHD by inhibiting activated, alloreactive T cells while retaining GVT effects. Blood 115:4293–4301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pittari G, Fregni G, Roguet L et al (2010) Early evaluation of natural killer activity in post-transplant acute myeloid leukemia patients. Bone Marrow Transplantation 45:862–871

    Article  CAS  PubMed  Google Scholar 

  14. Meyer-Monard S, Passweg J, Siegler U et al (2009) Clinical-grade purification of natural killer cells in haploidentical hematopoietic stem cell transplantation. Transfusion 49:362–371

    Article  PubMed  Google Scholar 

  15. Shi J, Tricot G, Szmania S et al (2008) Infusion of haplo-identical killer immunoglobulin-like receptor ligand mismatched NK cells for relapsed myeloma in the setting of autologous stem cell transplantation. Br J Haematol 143:641–653

    Article  PubMed  PubMed Central  Google Scholar 

  16. Clausen J, Petzer AL, Vergeiner B et al (2001) Optimal timing for the collection and in vitro expansion of cytotoxic CD56(+) lymphocytes from patients undergoing autologous peripheral blood stem cell transplantation. J Hematother Stem Cell Res 10:513–521

    Article  CAS  PubMed  Google Scholar 

  17. Clausen J, Vergeiner B, Enk M et al (2003) Functional significance of the activation-associated receptors CD25 and CD69 on human NK-cells and NK-like T-cells. Immunobiology 207:85–93

    Article  CAS  PubMed  Google Scholar 

  18. Klingemann HG, Martinson J (2004) Ex vivo expansion of natural killer cells for clinical applications. Cytotherapy 6:15–22

    Article  PubMed  Google Scholar 

  19. de Rham C, Ferrari-Lacraz S, Jendly S et al (2007) The proinflammatory cytokines IL-2, IL-15 and IL-21 modulate the repertoire of mature human natural killer cell receptors. Arthritis Res Ther 9:R125

    Article  PubMed  PubMed Central  Google Scholar 

  20. Koehl U, Sorensen J, Esser R et al (2004) IL-2 activated NK cell immunotherapy of three children after haploidentical stem cell transplantation. Blood Cells Mol Dis 33:261–266

    Article  CAS  PubMed  Google Scholar 

  21. Spanholtz J, Tordoir M, Eissens D et al (2010) High log-scale expansion of functional human natural killer cells from umbilical cord blood CD34-positive cells for adoptive cancer immunotherapy. PLoS One 5, e9221

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sutlu T, Stellan B, Gilljam M et al (2010) Clinical-grade, large-scale, feeder-free expansion of highly active human natural killer cells for adoptive immunotherapy using an automated bioreactor. Cytotherapy 12:1044–1055

    Article  CAS  PubMed  Google Scholar 

  23. Torelli GF, Guarini A, Palmieri G et al (2002) Expansion of cytotoxic effectors with lytic activity against autologous blasts from acute myeloid leukaemia patients in complete haematological remission. Br J Haematol 116:299–307

    Article  CAS  PubMed  Google Scholar 

  24. Berg M, Lundqvist A, McCoy P Jr et al (2009) Clinical-grade ex vivo-expanded human natural killer cells up-regulate activating receptors and death receptor ligands and have enhanced cytolytic activity against tumor cells. Cytotherapy 11:341–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Clemenceau B, Gallot G, Vivien R et al (2006) Long-term preservation of antibody-dependent cellular cytotoxicity (ADCC) of natural killer cells amplified in vitro from the peripheral blood of breast cancer patients after chemotherapy. J Immunother 29:53–60

    Article  CAS  PubMed  Google Scholar 

  26. Cho D, Campana D (2009) Expansion and activation of natural killer cells for cancer immunotherapy. Korean J Lab Med 29:89–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fujisaki H, Kakuda H, Shimasaki N et al (2009) Expansion of highly cytotoxic human natural killer cells for cancer cell therapy. Cancer Res 69:4010–4017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang H, Cui Y, Voong N et al (2011) Activating signals dominate inhibitory signals in CD137L/IL-15 activated natural killer cells. J Immunother 34:187–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Somanchi SS, Senyukov VV, Denman CJ et al (2011) Expansion, purification, and functional assessment of human peripheral blood NK cells. J Vis Exp 48, e2540. doi:10.3791/2540

    Google Scholar 

  30. Parrish-Novak J, Dillon SR, Nelson A et al (2000) Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature 408:57–63

    Article  CAS  PubMed  Google Scholar 

  31. Denman CJ, Senyukov VV, Somanchi SS et al (2012) Membrane-bound IL-21 promotes sustained ex vivo proliferation of human natural killer cells. PLoS One 7, e30264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kucuk C, Hu X, Iqbal J et al (2013) HACE1 is a tumor suppressor gene candidate in natural killer cell neoplasms. Am J Pathol 182:49–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kucuk C, Iqbal J, Hu X et al (2011) PRDM1 is a tumor suppressor gene in natural killer cell malignancies. Proc Natl Acad Sci U S A 108:20119–20124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shah N, Martin-Antonio B, Yang H et al (2013) Antigen presenting cell-mediated expansion of human umbilical cord blood yields log-scale expansion of natural killer cells with anti-myeloma activity. PLoS One 8, e76781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu Y, Wu HW, Sheard MA et al (2013) Growth and activation of natural killer cells ex vivo from children with neuroblastoma for adoptive cell therapy. Clin Cancer Res 19:2132–2143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sheard MA, Asgharzadeh S, Liu Y et al (2013) Membrane-bound TRAIL supplements natural killer cell cytotoxicity against neuroblastoma cells. J Immunother 36:319–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Knorr DA, Ni Z, Hermanson D et al (2013) Clinical-scale derivation of natural killer cells from human pluripotent stem cells for cancer therapy. Stem Cells Transl Med 2:274–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bock AM, Knorr D, Kaufman DS (2013) Development, expansion, and in vivo monitoring of human NK cells from human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs). J Vis Exp: e50337

    Google Scholar 

  39. Schafer JL, Colantonio AD, Neidermyer WJ et al (2014) KIR3DL01 recognition of Bw4 ligands in the rhesus macaque: maintenance of Bw4 specificity since the divergence of apes and Old World monkeys. J Immunol 192:1907–1917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Alter G, Malenfant JM, Altfeld M (2004) CD107a as a functional marker for the identification of natural killer cell activity. J Immunol Methods 294:15–22

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the St. Baldrick’s Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinivas S. Somanchi Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Somanchi, S.S., Lee, D.A. (2016). Ex Vivo Expansion of Human NK Cells Using K562 Engineered to Express Membrane Bound IL21. In: Somanchi, S. (eds) Natural Killer Cells. Methods in Molecular Biology, vol 1441. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3684-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3684-7_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3682-3

  • Online ISBN: 978-1-4939-3684-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics