Skip to main content
Book cover

Macrophages pp 263–275Cite as

Cre Driver Mice Targeting Macrophages

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1784))

Abstract

The Cre/loxP system is a widely applied technology for site-specific genetic manipulation in mice. This system allows for deletion of the genes of interest in specific cells, tissues, and whole organism to generate a diversity of conditional knockout mouse strains. Additionally, the Cre/loxP system is useful for development of cell- and tissue-specific reporter mice for lineage tracing, and cell-specific conditional depletion models in mice. Recently, the Cre/loxP technique was extensively adopted to characterize the monocyte/macrophage biology in mouse models. Compared to other relatively homogenous immune cell types such as neutrophils, mast cells, and basophils, monocytes/macrophages represent a highly heterogeneous population which lack specific markers or transcriptional factors. Though great efforts have been made toward establishing macrophage-specific Cre driver mice in the past decade, all of the current available strains are not perfect with regard to their depletion efficiency and targeting specificity for endogenous macrophages. Here we overview the commonly used Cre driver mouse strains targeting macrophages and discuss their major applications and limitations.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Nagy A (2000) Cre recombinase: the universal reagent for genome tailoring. Genesis 26(2):99–109

    Article  CAS  PubMed  Google Scholar 

  2. Heffner CS, Herbert Pratt C, Babiuk RP et al (2012) Supporting conditional mouse mutagenesis with a comprehensive cre characterization resource. Nat Commun 3:1218. https://doi.org/10.1038/ncomms2186

    Article  PubMed  CAS  Google Scholar 

  3. Kuhn R, Torres RM (2002) Cre/loxP recombination system and gene targeting. Methods Mol Biol 180:175–204. https://doi.org/10.1385/1-59259-178-7:175

    Article  PubMed  CAS  Google Scholar 

  4. Kwan KM (2002) Conditional alleles in mice: practical considerations for tissue-specific knockouts. Genesis 32(2):49–62

    Article  CAS  PubMed  Google Scholar 

  5. Danielian PS, Muccino D, Rowitch DH et al (1998) Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Curr Biol 8(24):1323–1326

    Article  CAS  PubMed  Google Scholar 

  6. Srinivas S, Watanabe T, Lin CS et al (2001) Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol 1:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Buch T, Heppner FL, Tertilt C et al (2005) A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration. Nat Methods 2(6):419–426. https://doi.org/10.1038/nmeth762

    Article  CAS  PubMed  Google Scholar 

  8. Abram CL, Roberge GL, Hu Y et al (2014) Comparative analysis of the efficiency and specificity of myeloid-Cre deleting strains using ROSA-EYFP reporter mice. J Immunol Methods 408:89–100. https://doi.org/10.1016/j.jim.2014.05.009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Short ML, Nickel J, Schmitz A et al (1996) Lysozyme gene expression and regulation. EXS 75:243–257

    PubMed  CAS  Google Scholar 

  10. Cross M, Renkawitz R (1990) Repetitive sequence involvement in the duplication and divergence of mouse lysozyme genes. EMBO J 9(4):1283–1288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Clausen BE, Burkhardt C, Reith W et al (1999) Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res 8(4):265–277

    Article  CAS  PubMed  Google Scholar 

  12. Faust N, Varas F, Kelly LM et al (2000) Insertion of enhanced green fluorescent protein into the lysozyme gene creates mice with green fluorescent granulocytes and macrophages. Blood 96(2):719–726

    PubMed  CAS  Google Scholar 

  13. Ganz T, Gabayan V, Liao HI et al (2003) Increased inflammation in lysozyme M-deficient mice in response to Micrococcus luteus and its peptidoglycan. Blood 101(6):2388–2392. https://doi.org/10.1182/blood-2002-07-2319

    Article  PubMed  CAS  Google Scholar 

  14. Ye M, Iwasaki H, Laiosa CV et al (2003) Hematopoietic stem cells expressing the myeloid lysozyme gene retain long-term, multilineage repopulation potential. Immunity 19(5):689–699

    Article  CAS  PubMed  Google Scholar 

  15. Yasukawa H, Ohishi M, Mori H et al (2003) IL-6 induces an anti-inflammatory response in the absence of SOCS3 in macrophages. Nat Immunol 4(6):551–556. https://doi.org/10.1038/ni938

    Article  PubMed  CAS  Google Scholar 

  16. Herbert DR, Holscher C, Mohrs M et al (2004) Alternative macrophage activation is essential for survival during schistosomiasis and downmodulates T helper 1 responses and immunopathology. Immunity 20(5):623–635

    Article  CAS  PubMed  Google Scholar 

  17. Vannella KM, Barron L, Borthwick LA et al (2014) Incomplete deletion of IL-4Ralpha by LysM(Cre) reveals distinct subsets of M2 macrophages controlling inflammation and fibrosis in chronic schistosomiasis. PLoS Pathog 10(9):e1004372. https://doi.org/10.1371/journal.ppat.1004372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Greten FR, Eckmann L, Greten TF et al (2004) IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118(3):285–296. https://doi.org/10.1016/j.cell.2004.07.013

    Article  PubMed  CAS  Google Scholar 

  19. Kanter JE, Kramer F, Barnhart S et al (2012) Diabetes promotes an inflammatory macrophage phenotype and atherosclerosis through acyl-CoA synthetase 1. Proc Natl Acad Sci U S A 109(12):E715–E724. https://doi.org/10.1073/pnas.1111600109

    Article  PubMed  PubMed Central  Google Scholar 

  20. Goren I, Allmann N, Yogev N et al (2009) A transgenic mouse model of inducible macrophage depletion: effects of diphtheria toxin-driven lysozyme M-specific cell lineage ablation on wound inflammatory, angiogenic, and contractive processes. Am J Pathol 175(1):132–147. https://doi.org/10.2353/ajpath.2009.081002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Lucas T, Waisman A, Ranjan R et al (2010) Differential roles of macrophages in diverse phases of skin repair. J Immunol 184(7):3964–3977. https://doi.org/10.4049/jimmunol.0903356

    Article  CAS  PubMed  Google Scholar 

  22. Meng XM, Wang S, Huang XR et al (2016) Inflammatory macrophages can transdifferentiate into myofibroblasts during renal fibrosis. Cell Death Dis 7(12):e2495. https://doi.org/10.1038/cddis.2016.402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Miyake Y, Kaise H, Isono K et al (2007) Protective role of macrophages in noninflammatory lung injury caused by selective ablation of alveolar epithelial type II Cells. J Immunol 178(8):5001–5009

    Article  CAS  PubMed  Google Scholar 

  24. Sasmono RT, Oceandy D, Pollard JW et al (2003) A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. Blood 101(3):1155–1163. https://doi.org/10.1182/blood-2002-02-0569

    Article  PubMed  CAS  Google Scholar 

  25. Deng L, Zhou JF, Sellers RS et al (2010) A novel mouse model of inflammatory bowel disease links mammalian target of rapamycin-dependent hyperproliferation of colonic epithelium to inflammation-associated tumorigenesis. Am J Pathol 176(2):952–967. https://doi.org/10.2353/ajpath.2010.090622

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Mass E, Ballesteros I, Farlik M et al (2016) Specification of tissue-resident macrophages during organogenesis. Science 353(6304):aaf4238. https://doi.org/10.1126/science.aaf4238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Schulz C, Gomez Perdiguero E, Chorro L et al (2012) A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336(6077):86–90. https://doi.org/10.1126/science.1219179

    Article  PubMed  CAS  Google Scholar 

  28. Gomez Perdiguero E, Klapproth K, Schulz C et al (2015) Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518(7540):547–551. https://doi.org/10.1038/nature13989

    Article  PubMed  CAS  Google Scholar 

  29. Lin SL, Li B, Rao S et al (2010) Macrophage Wnt7b is critical for kidney repair and regeneration. Proc Natl Acad Sci U S A 107(9):4194–4199. https://doi.org/10.1073/pnas.0912228107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Nissen JC, Tsirka SE (2016) Tuftsin-driven experimental autoimmune encephalomyelitis recovery requires neuropilin-1. Glia 64(6):923–936. https://doi.org/10.1002/glia.22972

    Article  PubMed  PubMed Central  Google Scholar 

  31. Saha S, Aranda E, Hayakawa Y et al (2016) Macrophage-derived extracellular vesicle-packaged WNTs rescue intestinal stem cells and enhance survival after radiation injury. Nat Commun 7:13096. https://doi.org/10.1038/ncomms13096

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Stefater JA 3rd, Rao S, Bezold K et al (2013) Macrophage Wnt-Calcineurin-Flt1 signaling regulates mouse wound angiogenesis and repair. Blood 121(13):2574–2578. https://doi.org/10.1182/blood-2012-06-434621

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Yeo EJ, Cassetta L, Qian BZ et al (2014) Myeloid WNT7b mediates the angiogenic switch and metastasis in breast cancer. Cancer Res 74(11):2962–2973. https://doi.org/10.1158/0008-5472.CAN-13-2421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Ferron M, Vacher J (2005) Targeted expression of Cre recombinase in macrophages and osteoclasts in transgenic mice. Genesis 41(3):138–145. https://doi.org/10.1002/gene.20108

    Article  PubMed  CAS  Google Scholar 

  35. Boillee S, Yamanaka K, Lobsiger CS et al (2006) Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312(5778):1389–1392. https://doi.org/10.1126/science.1123511

    Article  PubMed  CAS  Google Scholar 

  36. Evangelidou M, Karamita M, Vamvakas SS et al (2014) Altered expression of oligodendrocyte and neuronal marker genes predicts the clinical onset of autoimmune encephalomyelitis and indicates the effectiveness of multiple sclerosis-directed therapeutics. J Immunol 192(9):4122–4133. https://doi.org/10.4049/jimmunol.1300633

    Article  CAS  PubMed  Google Scholar 

  37. Ferrini F, Trang T, Mattioli TA et al (2013) Morphine hyperalgesia gated through microglia-mediated disruption of neuronal Cl(−) homeostasis. Nat Neurosci 16(2):183–192. https://doi.org/10.1038/nn.3295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Johansson JU, Woodling NS, Wang Q et al (2015) Prostaglandin signaling suppresses beneficial microglial function in Alzheimer's disease models. J Clin Invest 125(1):350–364. https://doi.org/10.1172/JCI77487

    Article  PubMed  Google Scholar 

  39. Zhang MZ, Yao B, Wang Y et al (2015) Inhibition of cyclooxygenase-2 in hematopoietic cells results in salt-sensitive hypertension. J Clin Invest 125(11):4281–4294. https://doi.org/10.1172/JCI81550

    Article  PubMed  PubMed Central  Google Scholar 

  40. Martens LH, Zhang J, Barmada SJ et al (2012) Progranulin deficiency promotes neuroinflammation and neuron loss following toxin-induced injury. J Clin Invest 122(11):3955–3959. https://doi.org/10.1172/JCI63113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Kwan W, Trager U, Davalos D et al (2012) Mutant huntingtin impairs immune cell migration in Huntington disease. J Clin Invest 122(12):4737–4747. https://doi.org/10.1172/JCI64484

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Robblee MM, Kim CC, Porter Abate J et al (2016) Saturated fatty acids engage an IRE1alpha-dependent pathway to activate the NLRP3 inflammasome in myeloid cells. Cell Rep 14(11):2611–2623. https://doi.org/10.1016/j.celrep.2016.02.053

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Sugatani T, Hruska KA (2009) Impaired micro-RNA pathways diminish osteoclast differentiation and function. J Biol Chem 284(7):4667–4678. https://doi.org/10.1074/jbc.M805777200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Yu M, Zhou H, Zhao J et al (2014) MyD88-dependent interplay between myeloid and endothelial cells in the initiation and progression of obesity-associated inflammatory diseases. J Exp Med 211(5):887–907. https://doi.org/10.1084/jem.20131314

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Davies LC, Jenkins SJ, Allen JE et al (2013) Tissue-resident macrophages. Nat Immunol 14(10):986–995. https://doi.org/10.1038/ni.2705

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Schaller E, Macfarlane AJ, Rupec RA et al (2002) Inactivation of the F4/80 glycoprotein in the mouse germ line. Mol Cell Biol 22(22):8035–8043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Weichand B, Weis N, Weigert A et al (2013) Apoptotic cells enhance sphingosine-1-phosphate receptor 1 dependent macrophage migration. Eur J Immunol 43(12):3306–3313. https://doi.org/10.1002/eji.201343441

    Article  PubMed  CAS  Google Scholar 

  48. Zhang Z, Zhang F, An P et al (2011) Ferroportin1 deficiency in mouse macrophages impairs iron homeostasis and inflammatory responses. Blood 118(7):1912–1922. https://doi.org/10.1182/blood-2011-01-330324

    Article  PubMed  CAS  Google Scholar 

  49. Tan SY, Krasnow MA (2016) Developmental origin of lung macrophage diversity. Development 143(8):1318–1327. https://doi.org/10.1242/dev.129122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Yona S, Kim KW, Wolf Y et al (2013) Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38(1):79–91. https://doi.org/10.1016/j.immuni.2012.12.001

    Article  PubMed  CAS  Google Scholar 

  51. Parkhurst CN, Yang G, Ninan I et al (2013) Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155(7):1596–1609. https://doi.org/10.1016/j.cell.2013.11.030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Aychek T, Mildner A, Yona S et al (2015) IL-23-mediated mononuclear phagocyte crosstalk protects mice from Citrobacter rodentium-induced colon immunopathology. Nat Commun 6:6525. https://doi.org/10.1038/ncomms7525

    Article  PubMed  CAS  Google Scholar 

  53. Cain DW, O’Koren EG, Kan MJ et al (2013) Identification of a tissue-specific, C/EBPbeta-dependent pathway of differentiation for murine peritoneal macrophages. J Immunol 191(9):4665–4675. https://doi.org/10.4049/jimmunol.1300581

    Article  PubMed  CAS  Google Scholar 

  54. Kim KW, Williams JW, Wang YT et al (2016) MHC II+ resident peritoneal and pleural macrophages rely on IRF4 for development from circulating monocytes. J Exp Med 213(10):1951–1959. https://doi.org/10.1084/jem.20160486

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Molawi K, Wolf Y, Kandalla PK et al (2014) Progressive replacement of embryo-derived cardiac macrophages with age. J Exp Med 211(11):2151–2158. https://doi.org/10.1084/jem.20140639

    Article  PubMed  PubMed Central  Google Scholar 

  56. Theurl I, Hilgendorf I, Nairz M et al (2016) On-demand erythrocyte disposal and iron recycling requires transient macrophages in the liver. Nat Med 22(8):945–951. https://doi.org/10.1038/nm.4146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. DeFalco T, Bhattacharya I, Williams AV et al (2014) Yolk-sac-derived macrophages regulate fetal testis vascularization and morphogenesis. Proc Natl Acad Sci U S A 111(23):E2384–E2393. https://doi.org/10.1073/pnas.1400057111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Batti L, Sundukova M, Murana E et al (2016) TMEM16F regulates spinal microglial function in neuropathic pain states. Cell Rep 15(12):2608–2615. https://doi.org/10.1016/j.celrep.2016.05.039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Goldmann T, Wieghofer P, Muller PF et al (2013) A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation. Nat Neurosci 16(11):1618–1626. https://doi.org/10.1038/nn.3531

    Article  PubMed  CAS  Google Scholar 

  60. Goldmann T, Zeller N, Raasch J et al (2015) USP18 lack in microglia causes destructive interferonopathy of the mouse brain. EMBO J 34(12):1612–1629. https://doi.org/10.15252/embj.201490791

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Lewitus GM, Konefal SC, Greenhalgh AD et al (2016) Microglial TNF-alpha suppresses cocaine-induced plasticity and behavioral sensitization. Neuron 90(3):483–491. https://doi.org/10.1016/j.neuron.2016.03.030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Li D, Wang C, Yao Y et al (2016) mTORC1 pathway disruption ameliorates brain inflammation following stroke via a shift in microglia phenotype from M1 type to M2 type. FASEB J 30(10):3388–3399. https://doi.org/10.1096/fj.201600495R

    Article  PubMed  CAS  Google Scholar 

  63. Wolf Y, Shemer A, Polonsky M et al (2017) Autonomous TNF is critical for in vivo monocyte survival in steady state and inflammation. J Exp Med 214(4):905–917. https://doi.org/10.1084/jem.20160499

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Hulsmans M, Clauss S, Xiao L et al (2017) Macrophages facilitate electrical conduction in the heart. Cell 169(3):510–522.e20. https://doi.org/10.1016/j.cell.2017.03.050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Gao H, Danzi MC, Choi CS et al (2017) Opposing functions of microglial and macrophagic TNFR2 in the pathogenesis of experimental autoimmune encephalomyelitis. Cell Rep 18(1):198–212. https://doi.org/10.1016/j.celrep.2016.11.083

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Peng J, Gu N, Zhou L et al (2016) Microglia and monocytes synergistically promote the transition from acute to chronic pain after nerve injury. Nat Commun 7:12029. https://doi.org/10.1038/ncomms12029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Kaplan DH, Li MO, Jenison MC et al (2007) Autocrine/paracrine TGFbeta1 is required for the development of epidermal Langerhans cells. J Exp Med 204(11):2545–2552. https://doi.org/10.1084/jem.20071401

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Zahner SP, Kel JM, Martina CA et al (2011) Conditional deletion of TGF-betaR1 using Langerin-Cre mice results in Langerhans cell deficiency and reduced contact hypersensitivity. J Immunol 187(10):5069–5076. https://doi.org/10.4049/jimmunol.1101880

    Article  PubMed  CAS  Google Scholar 

  69. Samokhvalov IM, Samokhvalova NI, Nishikawa S (2007) Cell tracing shows the contribution of the yolk sac to adult haematopoiesis. Nature 446(7139):1056–1061. https://doi.org/10.1038/nature05725

    Article  PubMed  CAS  Google Scholar 

  70. Boiers C, Carrelha J, Lutteropp M et al (2013) Lymphomyeloid contribution of an immune-restricted progenitor emerging prior to definitive hematopoietic stem cells. Cell Stem Cell 13(5):535–548. https://doi.org/10.1016/j.stem.2013.08.012

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Institutes of Health (R00 CA188093 to G.R. and P30 CA034196 to E.L.) of the United States. We apologize to our colleagues whose works are not cited in this manuscript due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangwen Ren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Shi, J., Hua, L., Harmer, D., Li, P., Ren, G. (2018). Cre Driver Mice Targeting Macrophages. In: Rousselet, G. (eds) Macrophages. Methods in Molecular Biology, vol 1784. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7837-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7837-3_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7836-6

  • Online ISBN: 978-1-4939-7837-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics