Skip to main content

In Vivo Depletion of FoxP3+ Tregs Using the DEREG Mouse Model

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 707))

Abstract

In recent years, researchers have increasingly focused on the modulation of regulatory T cell (Treg) function to interfere with the outcome of virtually every type of immune response. For a long time, specific in vivo targeting of Tregs was precluded due to the lack of appropriate markers. Only after the discovery of Foxp3 as a Treg-specific transcription factor, was the development of Treg-specific mouse models feasible. We generated DEREG mice (DEpletion of REGulatory T cells), a BAC (bacterial artificial chromosome) transgenic mouse line, which allows direct in vivo analysis and depletion of this exceedingly important cell type. Our DEREG mice carry a DTR-eGFP transgene under the control of an additional Foxp3 promoter, thereby allowing specific depletion of Treg by application of diphtheria toxin at any desired point of time during an ongoing immune response. This chapter will elaborate the advantages and disadvantages of employing different genetic approaches and discuss further parameters used in the studies focusing on employment of diphtheria toxin and its degree of general toxicity in mice. Additionally, we will address the question: to which extent DEREG mice are suitable for studying the effect of long-term Treg depletion during specific immune responses.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Sakaguchi, S. et al. (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155 (3), 1151–1164

    PubMed  CAS  Google Scholar 

  2. Sakaguchi, S. (2004) Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22, 531–562

    Article  PubMed  CAS  Google Scholar 

  3. Belkaid, Y. and Rouse, B.T. (2005) Natural regulatory T cells in infectious disease. Nat Immunol 6 (4), 353–360

    Article  PubMed  CAS  Google Scholar 

  4. Fontenot, J.D. et al. (2005) Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22 (3), 329–341

    Article  PubMed  CAS  Google Scholar 

  5. Wan, Y.Y. and Flavell, R.A. (2005) Identifying Foxp3-expressing suppressor T cells with a bicistronic reporter. Proc Natl Acad Sci U S A 102 (14), 5126–5131

    Article  PubMed  CAS  Google Scholar 

  6. Stephens, L.A. and Mason, D. (2000) CD25 is a marker for CD4+ thymocytes that prevent autoimmune diabetes in rats, but peripheral T cells with this function are found in both CD25+ and CD25− subpopulations. J Immunol 165 (6), 3105–3110

    PubMed  CAS  Google Scholar 

  7. Lehmann, J. et al. (2002) Expression of the integrin alpha Ebeta 7 identifies unique subsets of CD25+ as well as CD25− regulatory T cells. Proc Natl Acad Sci U S A 99 (20), 13031–13036

    Article  PubMed  CAS  Google Scholar 

  8. Kohm, A.P. et al. (2006) Cutting edge: anti-CD25 monoclonal antibody injection results in the functional inactivation, not depletion, of CD4+CD25+ T regulatory cells. J Immunol 176 (6), 3301–3305

    PubMed  CAS  Google Scholar 

  9. Couper, K.N. et al. (2009) Anti-CD25 antibody-mediated depletion of effector T cell populations enhances susceptibility of mice to acute but not chronic Toxoplasma gondii infection. J Immunol 182 (7), 3985–3994

    Article  PubMed  CAS  Google Scholar 

  10. Couper, K.N. et al. (2007) Incomplete depletion and rapid regeneration of Foxp3+ regulatory T cells following anti-CD25 treatment in malaria-infected mice. J Immunol 178 (7), 4136–4146

    PubMed  CAS  Google Scholar 

  11. Saito, M. et al. (2001) Diphtheria toxin receptor-mediated conditional and targeted cell ablation in transgenic mice. Nat Biotechnol 19 (8), 746–750

    Article  PubMed  CAS  Google Scholar 

  12. Naglich, J.G. et al. (1992) Expression cloning of a diphtheria toxin receptor: identity with a heparin-binding EGF-like growth factor precursor. Cell 69 (6), 1051–1061

    Article  PubMed  CAS  Google Scholar 

  13. Mitamura, T. et al. (1997) Structure-function analysis of the diphtheria toxin receptor toxin binding site by site-directed mutagenesis. J Biol Chem 272 (43), 27084–27090

    Article  PubMed  CAS  Google Scholar 

  14. Jung, S. et al. (2002) In vivo depletion of CD11c(+) dendritic cells abrogates priming of CD8(+) T cells by exogenous cell-associated antigens. Immunity 17 (2), 211–220

    Article  PubMed  CAS  Google Scholar 

  15. Fontenot, J.D. et al. (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4 (4), 330–336

    Article  PubMed  CAS  Google Scholar 

  16. Hori, S. et al. (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299 (5609), 1057–1061

    Article  PubMed  CAS  Google Scholar 

  17. Yang, X.W. et al. (1997) Homologous recombination based modification in Escherichia coli and germline transmission in transgenic mice of a bacterial artificial chromosome. Nat Biotechnol 15 (9), 859–865

    Article  PubMed  CAS  Google Scholar 

  18. Heintz, N. (2001) BAC to the future: the use of bac transgenic mice for neuroscience research. Nat Rev Neurosci 2 (12), 861–870

    Article  PubMed  CAS  Google Scholar 

  19. Sparwasser, T. and Eberl, G. (2007) BAC to immunology – bacterial artificial chromosome-mediated transgenesis for targeting of immune cells. Immunology 121 (3), 308–313

    Article  PubMed  CAS  Google Scholar 

  20. McKnight, R.A. et al. (1992) Matrix-attachment regions can impart position-independent regulation of a tissue-specific gene in transgenic mice. Proc Natl Acad Sci U S A 89 (15), 6943–6947

    Article  PubMed  CAS  Google Scholar 

  21. Brunkow, M.E. et al. (2001) Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 27 (1), 68–73

    Article  PubMed  CAS  Google Scholar 

  22. Sparwasser, T. et al. (2004) General method for the modification of different BAC types and the rapid generation of BAC transgenic mice. Genesis 38 (1), 39–50

    Article  PubMed  CAS  Google Scholar 

  23. Duffield, J.S. et al. (2005) Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest 115 (1), 56–65

    PubMed  CAS  Google Scholar 

  24. Cailhier, J.F. et al. (2005) Conditional macrophage ablation demonstrates that resident macrophages initiate acute peritoneal inflammation. J Immunol 174 (4), 2336–2342

    PubMed  CAS  Google Scholar 

  25. Walzer, T. et al. (2007) Identification, activation, and selective in vivo ablation of mouse NK cells via NKp46. Proc Natl Acad Sci U S A 104 (9), 3384–3389

    Article  PubMed  CAS  Google Scholar 

  26. Bennett, C.L. et al. (2005) Inducible ablation of mouse Langerhans cells diminishes but fails to abrogate contact hypersensitivity. J Cell Biol 169 (4), 569–576

    Article  PubMed  CAS  Google Scholar 

  27. Kissenpfennig, A. et al. (2005) Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity 22 (5), 643–654

    Article  PubMed  CAS  Google Scholar 

  28. Buch, T. et al. (2005) A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration. Nat Methods 2 (6), 419–426

    Article  PubMed  CAS  Google Scholar 

  29. Lahl, K. et al. (2007) Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease. J Exp Med 204 (1), 57–63

    Article  PubMed  CAS  Google Scholar 

  30. Kim, J.M. et al. (2007) Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat Immunol 8 (2), 191–197

    Article  PubMed  CAS  Google Scholar 

  31. Feuerer, M. et al. (2009) How punctual ablation of regulatory T cells unleashes an autoimmune lesion within the pancreatic islets. Immunity 31 (4), 654–664

    Article  PubMed  CAS  Google Scholar 

  32. McHugh, R.S. and Shevach, E.M. (2002) Cutting edge: depletion of CD4+CD25+ regulatory T cells is necessary, but not sufficient, for induction of organ-specific autoimmune disease. J Immunol 168 (12), 5979–5983

    PubMed  CAS  Google Scholar 

  33. Lahl, K. et al. (2009) Nonfunctional regulatory T cells and defective control of Th2 cytokine production in natural scurfy mutant mice. J Immunol 183 (9), 5662–5672

    Article  PubMed  CAS  Google Scholar 

  34. Heit, A. et al. (2008) Circumvention of regulatory CD4(+) T cell activity during cross-priming strongly enhances T cell-mediated immunity. Eur J Immunol 38 (6), 1585–1597

    Article  PubMed  CAS  Google Scholar 

  35. Mariathasan, S. et al. (2004) Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430 (6996), 213–218

    Article  PubMed  CAS  Google Scholar 

  36. Luo, Y. and Dorf, M.E. (2001) Delayed-type hypersensitivity. Curr Protoc Immunol Chapter 4, Unit 4.5

    Google Scholar 

  37. Thornton, A.M. and Shevach, E.M. (1998) CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 188 (2), 287–296

    Article  PubMed  CAS  Google Scholar 

  38. Komatsu, N. and Hori, S. (2007) Full restoration of peripheral Foxp3+ regulatory T cell pool by radioresistant host cells in scurfy bone marrow chimeras. Proc Natl Acad Sci U S A 104 (21), 8959–8964

    Article  PubMed  CAS  Google Scholar 

  39. Kim, J. et al. (2009) Cutting edge: depletion of Foxp3+ cells leads to induction of autoimmunity by specific ablation of regulatory T cells in genetically targeted mice. J Immunol 183(12), 7631–7763

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lahl, K., Sparwasser, T. (2011). In Vivo Depletion of FoxP3+ Tregs Using the DEREG Mouse Model. In: Kassiotis, G., Liston, A. (eds) Regulatory T Cells. Methods in Molecular Biology, vol 707. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61737-979-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-61737-979-6_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-978-9

  • Online ISBN: 978-1-61737-979-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics